












studies (Supplementary Figs. S3 and S5). These results
suggest that at least two of the next-generation ALK inhibi-
tors—ceritinib and AP26113—may be able to overcome
resistance to alectinibmediated by either I1171T or V1180L
mutations.

We next tested the efficacy of several ALK inhibitors (TAE-
684, crizotinib, and ceritinib) in alectinib-resistant H3122
CHR-A1 cells harboring the V1180L EML4–ALK mutation.
Parental H3122 cells, as well as KRAS- or EGFR-mutant
cancer cell lines (A549, H460, PC-9, and HCC827), were
used as controls. As shown in Fig. 4B, TAE-684 markedly
suppressed cell growth in both sensitive H3122 and alecti-
nib-resistant H3122 CHR-A1 cells, but had almost no effect
on the viability of other, non–ALK-dependent cancer cell
lines. TAE-684 suppressedALKphosphorylation anddown-
stream signaling (Fig. 4C, left), and induced apoptosis
(Supplementary Fig. S6). In contrast, crizotinib treatment
was significantly less effective against H3122CHR-A1 cells
compared with H3122 parental cells (Fig. 4B and C). Like
TAE-684, ceritinib demonstrated potent activity against
both parental H3122 and alectinib-resistant H3122 CHR-
A1 cells, decreasing cell growth (Fig. 4B), suppressing ALK
phosphorylation (Fig. 4C), and inducing apoptosis (Sup-
plementary Fig. S6).

The hsp90 inhibitor 17-AAG overcomes alectinib
resistance in H3122 CHR-A1 cells

Anumber of hsp90 inhibitors have demonstrated clinical
activity in ALK-rearranged NSCLC, including in 1 patient
with acquired resistance to crizotinib (29, 30).We therefore
tested whether the alectinib-resistant H3122 CHR-A1 cells
might be sensitive to the hsp90 inhibitor 17-AAG. Com-
pared with KRAS or EGFR-mutant cancer cell lines (A549,
H460, PC-9, and HCC827), CHR-A1 cells were highly
sensitive to 17-AAG treatment, and nearly as sensitive as
parental H3122 cells (Supplementary Fig. S7). On the basis
of immunoblotting, 17-AAG treatment reduced EML4–ALK
protein levels in both parental H3122 and H3122CHR-A1
cells to similar extents, as well as downstream signaling.
Thus, Hsp90 inhibition may represent an alternative ther-
apeutic strategy for overcoming resistance to alectinib due
to acquisition of a resistance mutation.

Ceritinib is active in a cell linemodel and a patient with
alectinib resistance

We also tested the efficacy of different ALK inhibitors in
the MGH056-1 cells. As shown in Fig. 5A, ceritinib, but
not crizotinib or alectinib, markedly suppressed the cell
growth of MGH056-1 cells. Ceritinib also suppressed ALK
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Figure 4. Ceritinib overcomes alectinib resistance inBa/F3models andH3122CHR-A1 cells. A, parental Ba/F3 cells andBa/F3 cells expressingWT, I1171T, or
V1180L EML4–ALK were seeded in 96-well plates and treated with the indicated concentrations of TAE-684 (left), crizotinib (center), or ceritinib (right) for 72
hours. Cell viability was analyzed using the CellTiter-Glo Assay. B, cancer cell lines, including parental H3122 and alectinib-resistant H3122 CHR-A1 cells,
were seeded in 96-well plates and treated with increasing concentrations of TAE-684 (left), crizotinib (center), or ceritinib (right) for 72 hours. Cell
viability was measured using the CellTiter-Glo Assay. Both parental H3122 cells and H3122 CHR-A1 cells showed marked sensitivity to TAE-684 and
ceritinib. Non–ALK-rearranged cell lines (A549, H460, HCC827, and PC-9 cells) showed minimal growth inhibition when exposed to ALK inhibitors. C,
suppression of ALK signaling by ALK inhibitors (TAE684, crizotinib, or ceritinib) in parental H3122 and CHR-A1 cells. Cells were exposed to increasing
concentrations of TAE684, crizotinib, or ceritinib for 6 hours. Cell lysates were immunoblotted to detect the indicated proteins.
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phosphorylation and downstream AKT and ERK phos-
phorylation to a greater extent than crizotinib and alecti-
nib (Figs. 5B and 2C). Consistent with these results,
treatment of patient MGH056 with ceritinib led to sig-
nificant tumor regression (Fig. 5C), with a confirmed
partial response lasting over 7 months. These preclinical
and clinical results suggest that ceritinib may be effective
in treating cancers that have become resistant to alectinib
due to a secondary mutation such as I1171T or V1180L.

Discussion
ALK-rearranged NSCLC represents one of the newest

oncogene-addiction paradigms in clinical oncology. As
withother oncogene-addicted cancers, ALK-rearranged lung
cancers are initially sensitive to the first-generation targeted
agent, but eventually become resistant through a variety of
different mechanisms. Remarkably, the vast majority of
crizotinib-resistant tumors remain ALK-dependent and
re-respond to more potent, next-generation ALK inhibitors
such as alectinib and ceritinib (21, 31). However, despite
their promising activity in early-phase studies, resistance to
next-generation ALK inhibitors invariably develops and
ultimately limits the clinical benefit afforded by these new
agents.

In this study, we focused on acquired resistance to alecti-
nib, one of the most advanced of the next-generation ALK
inhibitors in the clinic. We identified two novel ALK muta-
tions, V1180L in a cell line made resistant to alectinib, and
I1171T in a tumor specimen from a patient who had
relapsed on alectinib. Both mutations confer resistance to
crizotinib as well as alectinib, and hence add to the growing
list of secondary ALKmutations that canmediate crizotinib
resistance. Mutation of the V1180 residue has not yet been
reported in patients, but was observed at very low frequency
in an in vitro mutagenesis screen for crizotinib-resistant
mutants in EML4-ALK (25). On the basis of the crystal
structure of ALK (32), V1180 resides at the back of the ATP
pocket and likely makes direct contact with crizotinib and
alectinib, similar to the L1196 gatekeeper residue. Our
computational modeling revealed weaker binding of alec-
tinib to the V1180L-mutant compared with WT ALK, sup-
porting the notion that substitution of leucine for valine at
this residue interferes with the ability of alectinib to bind
effectively to the kinase.

The second alectinib-resistant mutation, I1171T, has not
been previously reported in crizotinib-resistant patients,
butmutation of this residue has beendescribed in 2patients
with neuroblastoma (26). In neuroblastoma, mutation at
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Figure 5. Preclinical and clinical
activity of ceritinib in alectinib-
resistant cancer cells harboring the
I1171T mutation. A, MGH056-1
cells were seeded in 96-well plates
and treated with the indicated
concentration of crizotinib,
alectinib, or ceritinib for 72 hours.
Cell viability was measured using
the CellTiter-Glo Assay. B,
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axial CT scan images of patient
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demonstrating marked
improvement in his liver
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this residue results in an I1171N amino substitution and
leads to activation of ALK, though the mutant kinase is
unable to transform Ba/F3 cells (33). On the basis of our
computational modeling studies, we would predict that
I1171T disrupts a hydrogen bond between alectinib and
E1167 (Fig. 3D), destabilizing the complex of alectinibwith
the mutant kinase. Whether ALK I1171T is weakly onco-
genic like I1171N and whether this could contribute to
crizotinib resistance is unknown.
Compared with V1180L, which conferred high-level TKI

resistance, the I1171T mutation was associated with inter-
mediate resistance to alectinib in cell line studies. This
mutation was discovered in a patient who had relapsed
after 4 months of alectinib therapy. Before alectinib, the
patient had received crizotinib with a response lasting 8
months. Although no tumor specimens were available
before or after crizotinib therapy for genetic analyses, we
suspect that the I1171T mutation emerged during the
course of alectinib treatment, given his previous durable
response to crizotinib followed by a re-response to alecti-
nib. Of note, this patient was treatedwith alectinib at a dose
of 300 mg twice daily. This represents half of the recom-
mended phase II dose (RP2D) of alectinib established in a
recent phase I study (NCT01588028; ref. 20). The relatively
low drug exposure at this dose may have been a factor in
selecting and/or expanding a clone with intermediate resis-
tance to alectinib. As higher drug exposures are predicted at
the RP2D, we speculate that patients treated at this dose
could develop more highly resistant mutations such as
V1180L.
Recently, several other mechanisms of resistance have

been reported in patients who have relapsed on next-gen-
erationALK inhibitors. The solvent frontmutationG1202R,
first discovered in a crizotinib-resistant tumor (11), appears
to mediate high-level resistance to both alectinib and cer-
itinib. In one case, a patient who had relapsed on crizotinib
was treated with alectinib at the RP2D and showed no
evidence of response, consistent with intrinsic resistance
(34). Molecular studies performed on a resistant specimen
revealed the G1202R mutation. Similarly, in a series of
11 ceritinib-resistant tumors, three were found to harbor
a new G1202R mutation and two had acquired a muta-
tion at residue F1174 (17). Importantly, neither of these
mutations was detectable in biopsies taken before ceritinib
treatment. In the absence of a secondary ALK mutation,
activation of alternative signaling pathways could also
mediate resistance to alectinib. Indeed, in 1 patient who
had relapsed on alectinib, amplification of cMET was
reported in a resistant specimen, although it is unknown
if it was driving resistance (35). In the case of our
alectinib-resistant patient with I1171T, cMET was likely
not driving the development of resistance, because
ceritinib, which has no anti-cMET activity, was able to
induce a durable response lasting over 7 months.
The observation that other structurally distinct, next-

generation ALK inhibitors may overcome alectinib resis-
tance in vitro and in vivo is clinically significant. Currently,
nine next-generation ALK inhibitors have entered the clinic,

with several showing potent activity in both crizotinib-
na€�ve and crizotinib-resistant patients (19–21). One of the
nine next-generation ALK inhibitors has already been
approved by the U.S. FDA for the treatment of advanced,
crizotinib-resistant, ALK-positive NSCLC. Until now, it was
unknownwhether patients could continue to derive benefit
from ALK inhibition after failure of a next-generation ALK
inhibitor. Our results suggest that patientsmay benefit from
multiple, sequential ALK inhibitor therapies, depending on
the underlyingmechanismof resistance. In those cases with
susceptible resistance mutations, such as V1180L and
I1171T, ceritinib may be highly effective, even in a third-
line, post-crizotinib, post-alectinib setting. However, in
cases where resistance is mediated by a highly recalcitrant
mutation, such as G1202R or by a completely different
tyrosine kinase, ceritinibmaynot behelpful, and alternative
treatment strategies, such as hsp90 inhibition or combina-
torial therapeutics, may be required. Overall, these findings
highlight the importance of serial biopsies to track the
dynamic evolution of drug resistance, and to enable the
rational selection of therapies most likely to be effective
based on the underlying molecular alterations.
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