
















basis underlying AMACR overexpression, because most
malignancies increase the need for fatty acids as an energy
source (9–12). Using FISH, we validated AMACR amplifi-
cation in 21% of the myxofibrosarcomas, detecting this
phenomenon for the first time in human cancers. This rate

was lower than that of SKP2 amplification (38%) found by
our previous study where we adopted quantitative DNA-
PCR to analyze SKP2 gene dosage (6). Notably, AMACR
amplification was reflected at the protein level and strongly
correlated with immunohistochemical overexpression.

Figure 5. The in vitro and in vivo therapeutic efficacy andmechanisms of ebselen oxide (EO). A, in the XTT assay (left), ebselen oxide at 20 to 40 mmol/L strongly
suppresses the viability of AMACR-expressing NMFH-1 and NMFH-2 myxofibrosarcoma cell lines, while CCD966SK fibroblasts are significantly less
susceptible, with the IC50 value exceeding 100 mmol/L. Using real-time RT-PCR (middle, right), no significant fluctuations ofAMACRmRNA level are detected
between 24 and 72 hours in both AMACR-expressing myxofibrosarcoma cell lines treated with ebselen oxide at 20 or 40 mmol/L, compared with PBS
controls. B, Western blot analyses reveal variable degrees of AMACR protein downregulation from 48 hours until 72 hours, especially remarkable in NMFH-1
cells (left). Addition of cyclohexamide at 10 mmol/L to the PBS- and ebselen oxide–treated myxofibrosarcoma cells for indicated times demonstrates nearly
constant expression of AMACR protein in the former group, while the ebselen oxide–treated group shows AMACR protein degradation as early as
24 hours after treatment with ebselen oxide at 40 mmol/L (middle). However, further treatment with MG132, a potent proteasome inhibitor, abolishes the
AMACR-degrading effect of ebselen oxide in bothmyxofibrosarcoma cells treatedwith this agent (right). C, with Annexin V/propidium iodine staining, the flow
cytometric assays showapparent inductionof cellular apoptosis in the ebselenoxide–treatedNMFH-1andNMFH-2myxofibrosarcomacell lines at 40mmol/L.
D, as plotted in the tumor growth curve (top left), the average tumor volume is significantly smaller in the treated NMFH-2 xenografts showing a
dose-dependent inhibitory effect, which, comparedwith PBS-treated counterparts, becomes significant fromdays 7 and 14onward inmice receiving ebselen
oxide at 40 and 20 mmol/L, respectively. �, P < 0.05 by the Student t test. Representative images of excised PBS control- and ebselen oxide–treated
NMFH-2 xenografts are shown after sacrifice (bottom left). Histologically, characteristic pleomorphic sarcoma cells featuring frequent mitosis are seen
in the control xenografts, while reduced tumor cellularity and necrotic change are observed in the ebselen oxide–treated group with significantly decreased
AMACR immunoexpression and higher TUNEL labeling (right).
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However, involvement of alterative regulatory mechanisms
was likely in a subset of myxofibrosarcomas, because
approximately 40% of AMACR-overexpressing myxofibro-
sarcomas lacked gene amplification. Actually, the expres-
sion level of AMACR in common carcinomas is mostly
regulated by various transcriptional factors, such as C/EBP
family members, Sp1, and ZNF202 (25–27). In the multi-
variate analysis of a subset cohort, AMACR overexpression,
independent of SKP2, remained as the single adverse prog-
nosticator, with an insignificant trend between two onco-
proteins in expression levels. This finding and validation of
AMACR with a proliferation-promoting attribute reinforce
AMACR as an oncogene indeed, not only a surrogate
bystander coamplified with SKP2 in myxofibrosarcomas.
However, we should not hastily underestimate the rele-
vance of SKP2, given its reported pleiotropic oncogenic
attributes (6) and thepotential bias of fewer cases evaluated.

The biologic function of the amplification-driven
AMACR overexpression remains undefined in mesenchy-
mal neoplasms. Recently, several lines of evidence linked
the racemase activity of AMACR to alterations in cancer cell
behavior (28). RNA interference showed that high AMACR
protein concentration promoted cell proliferation of pros-
tate carcinomas through its enhanced activity, in an andro-
gen-independent manner (28). In this series, both AMACR
amplification and AMACR overexpression were associated
with increasing histologic grades of myxofibrosarcomas,
with AMACR overexpression notably predictive of worse
prognosis, independent of grades and stages. These clinical
implications are mostly ascribable to the proproliferative
attribute of AMACR inmaintaining a malignant phenotype
without apparent biologic effect on cell survival, migration,
invasion, and angiogenesis. Specifically, shAMACR
impaired BrdUrd uptake and anchorage-independent col-
ony formation in vitro and inhibited the growth of derived
NMFH-2 xenografts in vivo, demonstrating an autonomous
growth-promoting role of AMACR in myxofibrosarcomas.

Given that sustained cell growth is a fundamental hall-
mark of cancer (29), it was interesting to identify cyclin D1
and cyclin T2 as potential mediators of AMACR, driving
uncontrolled cell proliferation. As a prototypic D-type
cyclin, cyclin D1 binds to cyclin-dependent kinases (CDK)
4/6 to phosphorylate retinoblastoma (Rb), thereby
unleashing E2F family members to transactivate genes
required for progression from the G1 to S-phase (30).
By amplification or translocation, the constitutive overex-
pression of D-type cyclins or associated CDK4/6 is an
established oncogenic aberration in various cancer types
(7, 30–33), including myxofibrosarcomas with CDK6
amplification. In this study, AMACR overexpression in
myxofibrosarcoma cells could increase cyclinD1 expression
at the mRNA and protein levels, whereas the mechanisms
underlying this regulatory link remain to be elucidated.
Several lines of circumstantial evidence suggest that com-
plex cross-talks between deregulated lipid metabolism and
cyclin D1 expression may involve the b-catenin–mediated
Wnt signaling, a pathway known to enhance transcriptional
activation of cyclin D1 (34, 35). In the mantle cell lym-

phomas characterized by the translocation-driven cyclinD1
overexpression, the blockade of overexpressed fatty acid
synthase, an enzyme catalyzing de novo synthesis of long-
chain fatty acids, not only downregulates cyclin D1 but also
b-catenin (34).Notably, AMACR-overexpressing hepatocel-
lular carcinomas are associated with mutated b-catenin,
implying that AMACR is a potential target of b-catenin (35).

Belonging to the C-type cyclins, cyclin T2 binds to its
kinase partner CDK9 to form the positive transcription
elongation factor b (p-TEFb) that promotes transcription
elongation of myriad genes by phosphorylating the carbox-
yl-terminal domain of RNA polymerase II (36–38).
Although cyclin T2 expression is essential for distinct genes
that are themselves essential for embryonic development
(39), neither its level nor associated CDK9 kinase activity
fluctuates during the cell cycle (36, 37). However, the
potential role of cyclin T2 in regulating G1–S transition is
probably linked to Rb protein (38, 40), for which miR-29a
or miR-142-3p could downregulate cyclin T2 expression, in
turn decreasing the phosphorylated Rb level (40). Intrigu-
ingly, in myxofibrosarcoma cell lines and xenografts stably
silenced against AMACR, expression of cyclin D1 and cyclin
T2 significantly decreased at the mRNA and protein levels,
with concomitantly reduced cell proliferation. The AMACR-
induced cell-cycle progression inmyxofibrosarcomasmight
be operated by more diverse mechanisms, because the G1

arrest was only found in the AMACR-knockdown NMFH-1
cells, while a G2/M–arresting effect was observed in the
NMFH-2 counterparts.

Ebselen oxide is a nonsubstrate-based covalent inactiva-
tor of AMACR enzyme recently identified by high-through-
put screening of approximately 5,000 compounds with the
goal of developing a novel therapy against androgen-inde-
pendent prostatic cancers (20). With a lower Ki value,
ebselen oxide appears more potent than the preceding
AMACR inhibitors and selectively kills AMACR-overexpres-
sing prostatic cancer cells (20), which are likely addicted to
oncometabolites derived from AMACR-dependent path-
ways (41). Compared with fibroblasts, the susceptibility to
ebselen oxide of AMACR-overexpressing myxofibrosarco-
mas was validated in vitro and extended for the first time in
vivo with a dose-dependent effect, indicating a therapeutic
window for specific targeting. Besides its known inactiva-
tion of enzymatic activity, it is mechanically intriguing to
find the induction of increased apoptotic cells and protea-
some-mediated degradation of AMACR protein. A combi-
nation of these effects may account for the antitumor
activity of ebselen oxide inmyxofibrosarcomas; there is still
room for improving the drug potency of ebselen oxide,
given its modest IC50 values of approximately 15 to 30
mmol/L (42).

In short, AMACR overexpression is associated with
adverse prognosis and is more pervasive than gene ampli-
fication in primary myxofibrosarcomas. AMACR has been
proven in vitro and in vivo to be an amplification-driven
oncogene, with its proliferation-promoting function being
the primary oncogenic attribute in myxofibrosarcomas.
AMACRoverexpression contributes to tumor aggressiveness
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and indicates adverse prognosis. Inducing proteasome-
mediated AMACR degradation and apoptosis, ebselen
oxide demonstrates selective cytotoxicity in AMACR-expres-
singmyxofibrosarcoma cell lines and dose-dependent inhi-
bition of derived xenografts, signifying that AMACR is a
potential therapeutic target in myxofibrosarcomas.
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