A Phase 2/3 Multicenter, Randomized, Open-Label Study to Compare the Efficacy and Safety of Lenalidomide Versus Investigator’s Choice in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma

Abstract

Purpose: Randomized, multicenter, open-label, phase 2/3 trial investigating lenalidomide versus investigator’s choice (IC) in relapsed/refractory diffuse large B-cell lymphoma (DLBCL).

Experimental Design: Patients with DLBCL who received ≥2 prior therapies were stratified by DLBCL subtype (germinal center B-cell (GCB) vs. non-GCB; determined by immunohistochemistry (IHC)) and then randomized 1:1 to lenalidomide (25 mg/day, 21 days of 28-day cycle) or IC (gemcitabine, rituximab, etoposide, or oxaliplatin). Crossover to lenalidomide was permitted for IC-treated patients with radiologically confirmed progressive disease. The primary endpoint was overall response rate (ORR). Progression-free survival (PFS), overall survival, and subtype analysis (GCB vs. activated B-cell (ABC)) using gene expression profiling (GEP) were exploratory endpoints.

Results: Stage 1: 102 DLBCL patients (by IHC: non-GCB, n = 54; GCB, n = 48) received 1 dose of lenalidomide or IC. Hematologic treatment-emergent adverse events with lenalidomide versus IC included neutropenia (42.6%; 36.4%), anemia (33.3%; 47.3%), thrombocytopenia (24.1%; 43.6%), and leukopenia (5.6%; 12.7%), respectively. Overall, lenalidomide-treated patients had an ORR of 27.5% versus 11.8% in IC (ORRs were similar regardless of IHC-defined DLBCL subtype). Median PFS was increased in patients receiving lenalidomide (13.6 weeks) versus IC (7.9 weeks; P = 0.041), with greater improvements in non-GCB patients (15.1 vs. 7.1 weeks, respectively; P = 0.021) compared with GCB (10.1 vs. 9.0 weeks, respectively; P = 0.550).

Conclusions: The clinical benefit of lenalidomide monotherapy in DLBCL patients was more evident in the non-GCB subtype. Exploratory analyses suggest that this preferential benefit was more pronounced in the GEP-defined ABC population, demonstrating a need for additional studies of lenalidomide in DLBCL using GEP subtyping.
Translational Relevance

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy comprising multiple subtypes based on cell-of-origin that influence clinical presentation, prognosis, and treatment response. Immunohistochemistry can be used to distinguish germinal center B-cell (GCB) and non-GCB subtypes, whereas gene expression profiling (GEP) can distinguish three categories—GCB, activated B-cell (ABC), and unclassified. The ABC subtype in particular is poorly responsive to standard immunochemotherapy, highlighting the need for additional treatment options. In this study, we report promising clinical activity with lenalidomide monotherapy in patients with DLBCL, especially in the GEP-defined ABC population. These data underscore a need for additional studies of lenalidomide in DLBCL using GEP subtyping and provide additional rationale for studies such as the ongoing phase 3 trial, ROBUST (NCT02285062) comparing lenalidomide plus immunochemotherapy versus immunochemotherapy alone in patients with treatment-naive ABC-subtype DLBCL selected by GEP.

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL) and is aggressive in nature (1). Overall survival (OS) rates range from 30% to 50% over 5 years (1), and approximately 60% of patients will remain disease-free following standard immunochemotherapy (2, 3). Although front-line R-CHOP (rituximab-cyclophosphamide, doxorubicin, vincristine, prednisone) can improve clinical outcomes in DLBCL, 20% to 25% of patients relapse after initial response to therapy (4, 5). Currently, no agents are approved for relapsed/refractory DLBCL by the FDA. The European Medicines Agency has granted conditional approval for the cytotoxic azanaphthacenedione pixantrone for multiply relapsed/refractory NHL (6).

DLBCL is a heterogeneous malignancy comprising multiple subtypes based on cell-of-origin that influence clinical presentation, prognosis, and treatment response (7, 8). Germinal center B-cell (GCB) and non-GCB subtypes can be distinguished using immunohistochemistry (IHC; ref. 9), whereas the more precise, gold-standard method of gene expression profiling (GEP) is capable of distinguishing three categories—GCB, activated B-cell (ABC), and unclassified (8, 10). Patients with ABC subtypes have an inferior outcome versus GCB patients when treated with immunochemotherapy. In addition, a subset of DLBCL patients (~20% to 30%; characterized by an aggressive clinical course and poor response to conventional chemotherapy) express high levels of MYC and BCL-2 proteins by IHC, and are termed double-expressors (3, 11).

Lenalidomide (Revlimid) is an ImiD immunomodulatory agent with activity in multiple NHL subpopulations (12), including heavily pretreated, relapsed/refractory DLBCL (13–15). In a phase 2 trial investigating lenalidomide monotherapy, patients with DLBCL (N = 108) achieved a 28% overall response rate (ORR) and 2.7 months’ median progression-free survival (PFS; ref. 14). In a retrospective analysis (N = 40), an ORR of 27.5% was observed in lenalidomide-treated patients with DLBCL; patients with the non-GCB subtype (by IHC) achieved higher ORR (52.9%) than the GCB subtype (8.7%; P = 0.006; ref. 13).

The antilymphoma activity of lenalidomide is mediated through multiple mechanisms including inhibiting proliferation of ABC-subtype DLBCL cells (16), increased T-cell activation and cytokine production (17), and enhancement of antibody-dependent cellular cytotoxicity (ADCC; ref. 18). Initial observations of lenalidomide’s mechanism of action showed the importance of decreased expression of interferon regulatory factor 4 (IRF4) and Spi-B transcription factor (SPIB), as well as inhibition of B-cell receptor–dependent NFκB activation in ABC-subtype DLBCL cell lines (19). Subsequent preclinical studies revealed that the cell-autonomous antilymphoma activity of lenalidomide is derived from ubiquitination and subsequent proteasomal degradation of the transcription factors Aiolos and Ikaros by the CRL4CRBN E3 ligase complex. Aiolos functions as a direct transcriptional repressor of interferon-stimulated genes (ISG), and Aiolos degradation by lenalidomide treatment results in upregulated ISG levels, independent of interferon beta production (20). Expression of CRBN/Aiolos and lenalidomide sensitivity in DLBCL is currently unknown.

Based on prior clinical observations of enhanced benefit in non-GCB patients, and to define activity of lenalidomide relative to double-expressor status or CRBN and Aiolos levels, the current study evaluated the efficacy and safety of lenalidomide versus investigator's choice (IC) in relapsed/refractory DLBCL patients.

Patients and Methods

Patient eligibility

Eligible patients were adults (≥18 years old) with histologically confirmed DLBCL who had relapsed or were refractory to 1 chemotheraphy regimen containing rituximab and an anthracycline/anthracine equivalent as well as ≥1 additional combination chemotherapy regimen, which had to include ≥1 treatment of ifosfamide, gemcitabine, etoposide, or a platinum agent, and, if not previously administered, rituximab; or conditioning regimen containing an alkylating agent followed by autologous or allogeneic stem cell transplant (SCT). Patients could be exempted from the additional treatment requirement if they were documented as being ineligible for both the second combination chemotherapy and SCT at the time of inclusion in the study. Other requirements were DLBCL subtype results by IHC from central pathology; measurable disease (≥2 cm longest diameter); Eastern Cooperative Oncology Group performance status 0–2; life expectancy ≥3 months; and a formalin-fixed paraffin-embedded (FFPE) tumor block or if possible, fresh frozen tumor sample. Patients with a diagnosis of NHL other than DLBCL or previous lenalidomide treatment were excluded.

Study design

DLC-001 was a phase 2/3, randomized, multicenter, open-label, two-stage trial to determine the efficacy and safety of single-agent lenalidomide versus IC in relapsed/refractory DLBCL patients. The objective of stage 1 was to select appropriate DLBCL subtypes for testing in stage 2. Stage 1 results are presented herein. The stage 1 primary endpoint ORR was determined by an Independent Response Assessment Committee (IRAC) and is defined by the sum of complete response (CR), CR unconfirmed (CRu), and partial response (PR) rates as recommended by the International Workshop Response Criteria (IWRC 1999; ref. 21). No
secondary endpoints were defined for stage 1. Exploratory end-
points for stages 1 and 2 included analyses of CR rate, duration of
overall response, duration of CR/objective response, PFS, OS, and
DLBCL subtype using GEP. The intent-to-treat (ITT) population
was defined as all randomized patients. The safety population
was defined as all randomized patients who received ≥1 dose of study
treatment. The primary efficacy analysis was performed on the
modified ITT (mITT) population, defined as all randomized
patients who had confirmed DLBCL and GCB or non-GCB sub-
type diagnosis and received ≥1 dose of study drug. This study was
conducted in accordance with the Declaration of Helsinki and
Good Clinical Practice guidelines. Prior to study commencement,
the protocol, the proposed informed consent form, and other
information for patients was reviewed and approved by a properly
constituted Institutional Review Board/Independent Ethics Com-
mittee at each participating institution. All patients provided
written informed consent.

Before stage 1 randomization, IHC was conducted by central
pathology to confirm DLBCL diagnosis and subtype. Patients
were stratified based on DLBCL subtype (GCB or non-GCB) and
randomized 1:1 to receive lenalidomide or IC (Supplementary
Fig S1). Lenalidomide dose was based on creatinine clearance
(CrCl)—patients received either 25 mg (CrCl ≥60 mL/min) or 10
mg (CrCl ≥30 mL/min but <60 mL/min) once daily for 21 days
(day 1 to day 21) in each 28-day cycle until progressive disease
(PD), unacceptable toxicity, or voluntary withdrawal. Patients
randomized to IC (single-agent gemcitabine, rituximab, etopo-
side, or oxaliplatin) were treated following a suggested standard
regimen (Supplementary Table S1) until treatment completion,
PD, unacceptable toxicity, or voluntary withdrawal. At the time of
radiologically documented relapse or PD, patients receiving IC
had the option to receive crossover lenalidomide.

The independent reviewers interpreted imaging studies and
relevant clinical data for study subjects using an adaptation of the
response criteria for NHLs from the IWRC 1999 for the primary
assessment (21). The IWRC 1999 criteria for assessment were
selected based on investigator consensus and the availability of
standardized imaging modalities at the various study sites.

Adverse events (AE) and serious AE (SAE) were graded using the
National Cancer Institute Common Terminology Criteria for
Adverse Events (NCI CTCAE) Version 4.03. Tumor flare reaction
was graded using NCI CTCAE Version 3.0.

Stage 2 of the study was not opened for enrollment because the
stage 1 efficacy results as assessed by the IRAC did not meet the
protocol-specified threshold.

Dose modification/interruption criteria

Dose modification/interruption of lenalidomide was required in
the event of specific toxicities such as grade 2 allergic reaction; grade
≥2 tumor lysis syndrome; or grade ≥3 neutropenia (grade 3
sustained ≥7 days or associated with fever or any grade 4), throm-
obocytopenia, or venous thrombosis/embolism. Lenalidomide dis-
continuation was required in the event of desquamation grade ≥3
or non-desquamation grade 4 rash, or grade ≥3 allergic reaction.
Dose interruption or modification of IC treatment was permitted
under the clinical practice of the investigator’s institution.

Immunohistochemistry

Subtyping on FFPE or fresh-frozen lymph node/tumor tissues was
performed per patient at study entry using the Hans algorithm
(9). Central pathology laboratories included the Centre for Lym-
phoid Cancers, British Columbia Cancer Agency (Vancouver,
Canada), and CHU Toulouse Purpan, Laboratoire d’Anatome
Pathologique. Four-micron-thick FFPE tumor sections were
stained with antibodies to c-myc (clone Y69; Abcam), BCL-2
(clone 124; DAKO), CRBN (rabbit monoclonal antibody; Cel-
gene CRBN65), and Aiolos (rabbit monoclonal antibody; Cel-
gene Clone 9B-9-7), using the Bond-Max automated slide strainer
(Leica Microsystems) and the Bond Polymer Refine Detection Kit.
Antigen retrieval was performed with Epitope Retrieval 2 (pH 9.0)
for 20 minutes at 100°C on the instrument. The slides were
blocked for endogenous peroxidase activity with Peroxide Block
for 5 minutes at room temperature. Sections were then incubated
with primary antibodies for 15 minutes at room temperature.
Horseradish peroxidase–labeled Polymer was applied at the
instrument’s default conditions, and diaminobenzidine tetrahy-
drochloride was used as the enzyme substrate to visualize specific
antibody localization. Slides were counterstained with hematox-
ylin. Markers used to distinguish GCB from non-GCB subtypes
were CD10, BCL6, and MUM-1. For distinguishing GCB from
non-GCB-based levels of CD10, BCL6, and MUM-1, a priori
scoring criteria were established before trial enrollment and the
first 50 cases were used for a cross-laboratory IHC validation
analysis. H-scores for CRBN and Aiolos were generated with H-
score = Σ(i + pi), where i is the intensity score and pi is the
percentage of the cells with the corresponding intensity.

Molecular characterization

Gene expression profiling subtyping on fresh-frozen lymph/
node/tumor tissues was batch performed at study conclusion.
RNA samples were extracted using the AllPrep DNA/RNA Kit
(Qiagen). Total RNA was amplified and labeled using Sensation-
Plus FFPE Reagent Kit and then hybridized on Affymetrix U133
Plus 2.0 GeneChips (Affymetrix) following vendor instructions.
Samples were classified as ABC, GCB, or unclassified DLBCL in a
blinded fashion using a Bayesian model based on a linear pre-
dictor score formed from the expression of genes that distinguish
these two subtypes as previously described (7, 22).

DNA sequencing of mutations in lymphoma-associated genes

Genomic DNA from patient samples was extracted with the AllPrep DNA/RNA Kit
(Qiagen) according to the manufacturer’s instructions. PCR was performed with a GeneAmp XL PCR
kit (Applied Biosystems) as previously described (23, 24). The sequences for primers applied to amplify MYD88,
CD79A, CD79B, CARD11, and TNAIP3 are summarized in Supplementary
Table S2. The PCR products were visualized by electrophore-
resis on a 1% agarose gel and ethidium bromide staining. The
templates were purified using the QuickStep2 96-well PCR
purification Kit (Edge Biosystems) and subsequently sequenced (Big-
Dye sequencing system, Applied Biosystems). Mutations were
confirmed on independent PCR products and sequenced from
both strands.

Genetic mutations in the B-cell receptor (BCR) pathway have
been shown to result in constitutive activity of NFκB, leading to
deregulated proliferation and survival signals (23, 25). In addi-
tion, mutations in this pathway are predicted to result in intrinsic
resistance to targeted agents such as ibritinib. Indeed, mutations
in CARD11 or TNAIP3 have been shown to inhibit clinical
response to ibritinib in R/R DLBCL (26). We therefore performed
targeted sequencing of genes in the BCR pathway (MYD88,
CD79A, CD79B, CARD11, and TNFAIP3) to understand if mutations abrogated lenalidomide activity.

Statistical analysis
All statistical analyses were conducted using SAS Version 9.1.3 or later. Efficacy evaluations were conducted using the mITT and ITT populations for the primary and supportive analyses, respectively. Statistical comparisons were made between lenalidomide and IC groups according to initial randomized treatment. The Kaplan–Meier method was used to estimate survival distribution functions for each treatment group; median of the survival distribution along with associated two-sided 95% confidence intervals (CI) was estimated. A Cox proportional hazards model was used to estimate the HR along with 95% CIs. In stage 1, a sample size of 25 patients per subtype per treatment group provided 90% power to detect a 35% difference in ORR between lenalidomide and IC at 2-sided α = 0.15 level assuming a 15% ORR in the IC group and 11.8% for lenalidomide.

Results

Patient demographics
The ITT population consisted of 111 patients randomized to lenalidomide (n = 54) or IC (n = 57). Of these, DLBCL subtyping was not feasible for 9 patients because of technical difficulties, resulting in a mITT population of 102 patients with DLBCL diagnosis and subtype confirmation of non-GCB (n = 54) or GCB (n = 48) by IHC and who received ≥1 dose of lenalidomide (n = 51) versus IC (n = 51). The IHC analysis for DLBCL subtyping was conducted by three independent laboratory facilities; the agreement rate among the laboratories was 87.5% to 97.9%. Overall, baseline characteristics in the mITT population were similar between treatment groups (Table 1). The majority of patients received ≥2 previous systemic chemotherapies (90.2% in the lenalidomide group vs. 92.2% in IC; P = 0.7270), and nearly half had received ≥3 prior systemic chemotherapies (49.0% vs. 62.7%, respectively; P = 0.1627).

Efficacy
IRAC review demonstrated that in the core treatment phase, 14 patients (27.5%) had a clinical response to lenalidomide versus 6 (11.8%) treated with IC (P = 0.079; Table 2). Following lenalidomide treatment, ORR was higher in both DLBCL subtypes versus IC. Based on subtyping by IHC (Table 2), non-GCB patients treated with lenalidomide had an ORR of 28.6% [n = 8; CR = 14.3% (n = 4)] versus 11.5% [n = 3; CR = 3.8% (n = 1)] for IC; a similar pattern was observed in GCB patients, with ORRs of 26.1% [n = 6; CR = 4.3% (n = 1)] and 12.0% [n = 3; no CRs], respectively.

Median duration of response based on IRAC review was longer in the lenalidomide-treated patients (73.9 weeks; 95% CI, 16.4

Table 1. Demographic characteristics in the overall population and DLBCL subtypes as determined by IHC

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>GCB</th>
<th>Non-GCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (min, max)</td>
<td>69.0 (20.0, 84.0)</td>
<td>65.0 (20.0, 84.0)</td>
<td>70.0 (28.0, 84.0)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>30 (58.8)</td>
<td>21 (41.2)</td>
<td>7 (13.7)</td>
</tr>
<tr>
<td>Female</td>
<td>35 (68.6)</td>
<td>20 (39.2)</td>
<td>15 (29.4)</td>
</tr>
<tr>
<td>ECOG PS, n (%)<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16 (31.4)</td>
<td>10 (19.6)</td>
<td>6 (13.7)</td>
</tr>
<tr>
<td>1</td>
<td>25 (49.0)</td>
<td>19 (37.3)</td>
<td>12 (27.3)</td>
</tr>
<tr>
<td>2</td>
<td>8 (15.7)</td>
<td>4 (7.8)</td>
<td>7 (16.2)</td>
</tr>
<tr>
<td>Prior systemic anticancer therapy, n (%)<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥0 therapy</td>
<td>51 (100)</td>
<td>31 (60.8)</td>
<td>20 (44.4)</td>
</tr>
<tr>
<td>≥1 therapy</td>
<td>31 (60.8)</td>
<td>20 (39.2)</td>
<td>12 (26.6)</td>
</tr>
<tr>
<td>Prior systemic anticancer therapy, n (%)<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-CHOP</td>
<td>38 (74.5)</td>
<td>23 (45.1)</td>
<td>15 (33.3)</td>
</tr>
<tr>
<td>R-ICE</td>
<td>12 (23.5)</td>
<td>7 (13.7)</td>
<td>5 (11.1)</td>
</tr>
<tr>
<td>R-DHAP</td>
<td>15 (29.4)</td>
<td>9 (17.6)</td>
<td>5 (11.1)</td>
</tr>
<tr>
<td>R-GemOx</td>
<td>9 (17.6)</td>
<td>5 (9.8)</td>
<td>4 (8.8)</td>
</tr>
<tr>
<td>Other</td>
<td>16 (31.4)</td>
<td>7 (13.7)</td>
<td>5 (11.1)</td>
</tr>
</tbody>
</table>

^aOne patient (GCB subtype) missing from lenalidomide arm and 1 patient (non-GCB subtype) in the lenalidomide arm entered with ECOG PS2 at screening but had 4 at baseline.

^bThese patients were exempt from the requirement for second combination chemotherapy or stem cell transplant on the basis of advanced age alone (≥65 years).

^cPrior systemic anticancer therapy for DLBCL received by a patient with the same regimen multiple times was counted only once. All regimens are listed in descending order of frequency based on the overall ITT population.

^dThe patients were exempt from the requirement for second combination chemotherapy or stem cell transplant on the basis of advanced age alone (≥65 years).

Abbreviations: ASCT, autologous stem cell transplant; ECOG, Eastern Cooperative Oncology Group; PS, performance status; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; R-DHAP, rituximab, dexamethasone, high-dose cytarabine, cisplatin; R-GemOx, rituximab, gemcitabine, oxaliplatin; R-ICE, rituximab, ifosfamide, carboplatin, etoposide.
Lenalidomide Versus Investigator’s Choice in DLBCL

Table 2. Response rate based on IRAC assessment (IWRC 1999)\(^a\) (mITT Population)

<table>
<thead>
<tr>
<th>Overall</th>
<th>GCB</th>
<th>Non-GCB</th>
<th>Gene expression profiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Len</td>
<td>IC</td>
<td></td>
<td>GCB</td>
</tr>
<tr>
<td>n = 51</td>
<td>n = 51</td>
<td>n = 23</td>
<td>n = 25</td>
</tr>
<tr>
<td>ORR, n (%)</td>
<td>6 (11.8)</td>
<td>6 (26.1)</td>
<td>3 (12.0)</td>
</tr>
<tr>
<td>[95% CI]</td>
<td>[15.9–41.7]</td>
<td>[10.2–48.4]</td>
<td>[2.5–31.2]</td>
</tr>
<tr>
<td>P value(^b)</td>
<td>0.079</td>
<td>0.279</td>
<td>0.179</td>
</tr>
</tbody>
</table>

CR, n (%)	1 (2.0)	1 (4.0)	1 (4.0)	0 (0.0)
P value\(^c\)	0.41 (0.27–0.92)	0.50 (0.27–0.92)	0.70 (0.38–1.50)	0.77 (0.35–1.68)
OS, weeks	13.6 7.9 10.1 9.0	58.4 20.4 32.3 21.7	112.0 24.2 112.0 47.2	108.0 108.0 108.0 108.0
P value	0.041	0.550	0.021	0.506
HR (95% CI)	0.64 (0.41–0.99)	0.82 (0.43–1.57)	0.50 (0.27–0.92)	0.77 (0.35–1.68)

* mITT population; defined as all randomized patients who had confirmed DLBCL and GCB or non-GCB subtype diagnosis and received ≥1 dose of study drug.

\(^a\) Exact CI based on binomial distribution.

\(^b\) P value derived from the Fisher exact test.

\(^c\) No CR unconfirmed observed.

Abbreviation: Len, lenalidomide.

weeks—not yet reached) than in IC-treated patients (29.2 weeks; 95% CI, 7.0–43.9 weeks; \(P = 0.138\)). Median PFS was 13.6 weeks in patients treated with lenalidomide and 7.9 weeks in those treated with IC (HR, 0.64; \(P = 0.041\); Fig. 1; Table 2). An increase in median PFS was observed in non-GCB patients treated with lenalidomide (15.1 weeks) versus IC (7.1 weeks; HR, 0.50; \(P = 0.021\)), compared with median PFS of 10.1 and 9.0 weeks, respectively, in GCB patients (HR, 0.82; \(P = 0.550\); Fig. 1; Table 2).

Patients treated with lenalidomide versus IC achieved similar OS, irrespective of IHC-defined DLBCL subtype (Table 2); median OS was 31.0 and 24.6 weeks for lenalidomide and IC arms, respectively (HR, 0.91; \(P = 0.673\)). In non-GCB patients, median OS with lenalidomide was 32.3 weeks versus 20.4 with IC (HR, 0.70; \(P = 0.253\)), compared with 30.0 versus 24.9 weeks (HR, 1.23; \(P = 0.352\)) in GCB patients (Fig. 2; Table 2).

Safety evaluation

The safety population consisted of 109 patients. Median treatment duration was 7.4 weeks in lenalidomide-treated patients [n = 54]; 7.1 weeks non-GCB (n = 28); 9.1 weeks GCB (n = 24) versus 5.1 weeks in the IC group [n = 55]; 4.1 weeks non-GCB (n = 28); 5.1 weeks GCB (n = 25)]. Overall, similar proportions of patients treated with lenalidomide [31 (57.4%)] versus IC [30 (54.5%)] required ≥1 dose interruption for AEs. All patients, irrespective of study treatment or DLBCL subtype, had ≥1 treatment-emergent adverse event (TEAE). Grade ≥3 TEAEs (Supplementary Table S3) were reported in 43 patients in both lenalidomide (79.6%) and IC (78.2%) groups. Incidence of SAEs was similar across groups: 30 patients (55.6%) treated with lenalidomide and 30 (54.5%) with IC. Among common TEAEs reported in ≥10% of patients (Table 3), nausea, anemia, thrombocytopenia, leukopenia, back pain, hypokalemia, and hyperglycemia were observed more frequently (difference of ≥5%) in patients treated with IC, whereas fatigue, constipation, diarrhea, dry mouth, neutropenia, cough, bronchitis, rash, and tumor flare reaction were more frequent in the lenalidomide group.
Figure 1.
PFS in DLBCL subtype populations after treatment with lenalidomide or IC. Kaplan–Meier estimates of PFS are shown for (A) overall population, (B) GCB DLBCL, and (C) non-GCB DLBCL analyzed by IHC, as well as (D) GCB DLBCL and (E) ABC DLBCL analyzed by GEP.
Figure 2.
OS in DLBCL subtype populations after treatment with lenalidomide or IC. Kaplan–Meier estimates of OS are shown for (A) overall population, (B) GCB DLBCL, and (C) non-GCB DLBCL analyzed by IHC, as well as (D) GCB DLBCL and (E) ABC DLBCL analyzed by GEP.

<table>
<thead>
<tr>
<th>Group</th>
<th>Median (weeks) (range)</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall population (IHC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenalidomide overall</td>
<td>31.0 (16.6–41.3)</td>
<td>0.91 (0.59–1.41)</td>
<td>0.673</td>
</tr>
<tr>
<td>Control overall</td>
<td>24.6 (12.7–33.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCB Population (IHC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenalidomide GCB</td>
<td>30.0 (14.9–44.4)</td>
<td>1.23 (0.65–2.34)</td>
<td>0.526</td>
</tr>
<tr>
<td>Control GCB</td>
<td>24.9 (13.7–58.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-GCB Population (IHC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenalidomide non-GCB</td>
<td>32.3 (15.9–48.1)</td>
<td>0.70 (0.38–1.30)</td>
<td>0.253</td>
</tr>
<tr>
<td>Control non-GCB</td>
<td>20.4 (10.3–33.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Median (weeks) (range)</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCB Population (GEP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenalidomide GCB</td>
<td>30.0 (18.0–34.6)</td>
<td>1.12 (0.52–2.42)</td>
<td>0.767</td>
</tr>
<tr>
<td>Control GCB</td>
<td>20.1 (13.7–36.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC Population (GEP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenalidomide ABC</td>
<td>108.4 (9.6–108.4)</td>
<td>0.47 (0.17–1.33)</td>
<td>0.144</td>
</tr>
<tr>
<td>Control ABC</td>
<td>18.6 (6.6–48.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
patients (n = 29), median OS was 32.7 weeks versus 10.1 weeks in the remaining IC-treated patients (n = 22; P = 0.201).

Correlation of cereblon and Aiolos protein expression in tumor biopsies with response to therapy

In 38 evaluable biopsy samples (19 in each arm), staining intensities for CRBN (total, nuclear, and cytoplasmic) or Aiolos (nuclear) did not correlate with response to lenalidomide or IC therapy (Fig. 3A and B). In addition, there was little correlation between Aiolos and CRBN protein expression in tumor biopsies (Fig. 3C).

Efficacy in patients with concurrent expression of MYC and BCL-2, and in patients with mutations in the B-cell receptor/NFκB pathway

Thirty-three patients (39.3%) were double-expressor for MYC and BCL-2 by IHC. In the lenalidomide-treated arm, ORR was similar for double-expressors (33.3%; n = 6, 2 PR) and non-double-expressors (33.3%; n = 12, 1 CR, 3 PR). Median PFS was 17.9 weeks (95% CI, 7.3–27.0) for double-expressors and 16.3 weeks (95% CI, 6.4–25.1) for non–double-expressors.

In patients with an identified mutation in the BCR pathway, ORR with lenalidomide was 28.6% (n = 7; 1 CR, 1 PR) versus...
18.75% for IC-treated patients (n = 16; 1 CR, 1 PR). In patients with no mutations identified, ORR was 29.6% with lenalidomide (n = 27; 3 CR, 5 PR) versus 6.6% with IC (n = 23; 2 PR). Median PFS based on mutational status demonstrated no statistical significance between lenalidomide and IC-treated patients (data not shown).

Discussion

In DLC-001, lenalidomide treatment resulted in higher ORR and longer PFS compared with IC in patients with heavily pretreated DLBCL. When analyzed using IHC, the non-GCB population benefited from use of lenalidomide monotherapy and achieved an ORR of 28.6% versus 11.5% in IC. However, exploratory analysis using GEP showed a more pronounced benefit after lenalidomide treatment compared with IC (ORR 45.5% and 18.8%, respectively) that is associated with longer PFS and OS in ABC patients and supports further investigation of GEP-guided treatment in DLBCL patients. Additional exploratory investigations examining lenalidomide response in MYC/BCL-2 positive patients revealed similar ORR compared with non–double-expressor patients (33.3% vs. 33.3%), respectively. Although lenalidomide activity appeared to be independent of the mutational status of genes involved in the BCR/NFKB pathways, such as MYD88, CD79A, CD79B, CARD11, and TNFAIP3, the small sample size necessitates additional studies in larger patient populations as the context of these mutations relative to cell-of-origin is an important contributor to the resulting biology.

The ORR in patients who crossed over to lenalidomide was modest, which might be expected from heavily pretreated patients who progressed after additional therapy; nonetheless, increased OS was observed in lenalidomide–crossover patients (32.7 weeks) versus non–crossover patients (10.1 weeks). Although the use of IC as the control arm in this study could be considered a limitation (especially in the context of the IC regimen including agents that were used in previous lines of therapy), and patient numbers were small, these results are promising and warrant further investigation. Results of this study are consistent with previous investigations, including a phase 2 trial that investigated lenalidomide monotherapy in patients with DLBCL and reported an ORR of 20% with a similar AE profile (14). Another phase 2 trial recently showed that lenalidomide is also effective in relapsed/refractory DLBCL when combined with the anti-CD20 antibody obinutuzumab, with 35.2% ORR, 16.9% CR/Cru rate, and 10.6 months median OS (95% CI, 6.5–NR; ref. 27).

Non-GCB as defined by IHC remains a heterogeneous NHL population as classic IHC methods cannot distinguish ABC from other unclassified non-GCB subtypes. GEP is more accurate than IHC for predicting patient response to R-CHOP therapy (28). In this study, obvious differences in lenalidomide treatment response were observed in non-GCB versus ABC, supporting use of GEP methods over IHC in DLBCL subtype analysis. Use of GEP can be restricted due to limited accessibility to equipment and cost. However, newer technologies are being developed that utilize the more readily available FFPE tissue samples and produce robust, consistent results with speed and high accuracy (29). The 20-gene Lymph2Cx expression assay utilizes FFPE tissue and has demonstrated >95% concordance with previously published methods for DLBCL subtype determination, along with applicability to large patient cohorts (29).

Compared with GCB populations, patients with non-GCB/ABC DLBCL have decreased response to standard chemotherapy regimens and poor prognosis (8–10, 30). Clinical trials have demonstrated preferential activity by subtypes with agents such as lenalidomide, bortezomib, and ibrutinib, supporting the need to develop personalized therapies effective in high-risk populations. In one retrospective analysis of relapsed/refractory DLBCL patients treated with lenalidomide monotherapy (N = 40), non-GCB patients had a significantly higher ORR (40.6% vs. 8.6% in IC, P = 0.001; ref. 31). In a second, recently published retrospective analysis in 123 patients with relapsed/refractory DLBCL at median follow-up of 4.5 years, lenalidomide treatment was associated with significantly higher response rates in the non-GCB population compared with IC (CR: 32% vs. 0; PR: 33% vs. 3%, respectively; P < 0.001 for both). Median PFS was also longer with lenalidomide in the non-GCB population (37 vs. 30 months for GCB; P < 0.001; ref. 31). The proteasome inhibitor bortezomib in combination with DA-EPOCH (dose-adjusted etoposide, vin-cristine, doxorubicin, cyclophosphamide, and prednisone) showed significantly higher ORR (83% vs. 13%; P < 0.001) and median OS (10.8 vs. 3.4 months; P = 0.003) in relapsed/refractory ABC versus GCB DLBCL subpopulations (N = 49) (32). In a phase 2 trial (N = 70), ibrutinib, a Bruton’s tyrosine kinase inhibitor, elicited higher ORRs among patients with relapsed/refractory ABC DLBCL versus GCB (40% and 5.3%, respectively, and PFS of 2.5 and 1.3 months, respectively (33).

Preclinical studies have demonstrated modulation of CRBN expression by lenalidomide, resulting in ubiquitination and subsequent proteasomal degradation of Aiolos and Ikaros, leading to decreased proliferation of ABC-DLBCL cell lines and activation of immune cells such as T and natural killer cells (16–18, 20). However, in this study, investigation of Aiolos and CRBN levels in tumor biopsies revealed a range of expression for each protein and, more importantly, a lack of correlation between expression and response to lenalidomide treatment. Lenalidomide is further being investigated as front-line therapy in a phase 3 trial, ROBUST (NCT02285062), which will evaluate the efficacy and safety of lenalidomide plus R-CHOP (R’-CHOP) versus placebo plus R-CHOP in treatment-naive ABC DLBCL as determined by GEP subtype analysis. DLC-001 results suggest that DLBCL subtyping by GEP may facilitate patient selection, and the ROBUST trial could provide further evidence for this approach. In addition, the phase 3 REMARC (NCT01122472) trial evaluated maintenance therapy with lenalidomide versus placebo in responding elderly patients with DLBCL treated with R-CHOP, and recently reported improved PFS with 2 years of lenalidomide maintenance therapy versus placebo (34); further analyses from this study (including subsets based on cell-of-origin subtyping) are awaited.

Disclosure of Potential Conflicts of Interest

M.S. Czuczman is an employee of Celgene. M. Trnitsik reports receiving speakers bureau honoraria from and is a consultant/advisory board member for Celgene. A. Davies is a consultant/advisory board member for Celgene, CTI, Gilead, Jansen, Karyopharma, Mundipharma, Roche and Takeda, and reports receiving commercial research grants from Acerta Pharma, Bayer, Celgene, Gilead, Karyopharma, Roche, and Takeda. R.D. Gascoyne is a consultant/advisory board member for Celgene.
Czuczman et al.

G.W. Slack is a consultant/advisory board member for Seattle Genetics Inc. T.E. Witzig is a consultant/advisory board member for Celgene. G.W. Wright is listed as a co-inventor on lymphoma-related patents that are owned by the US Federal Government and licensed to NanoString. J. Russo has ownership interest (including patents) in Celgene. P. Hagner has ownership interest (including patents) in Celgene Corporation. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: S. Rule, D.A. Eberhard, G.W. Wright, M.S. Czuczman, M. Staudt, Y. Yang

Development of methodology: S. Rule, D.A. Eberhard, G.W. Wright, M.S. Czuczman, L.M. Staudt, Y. Yang

Writing, review, and/or revision of the manuscript: M.S. Czuczman, M. Trineny, A. Davies, S. Rule, K.M. Linton, N. Wagner-Johnston, R.D. Gascoyne

Grant Support

This work was supported by Celgene Corporation, Inc.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 9, 2016; revised December 16, 2016; accepted March 31, 2017; published OnlineFirst April 5, 2017.

Acknowledgments

The authors received medical editorial assistance from Stephanie K. Doerner, PhD, of ProEd Communications, Inc.
Clinical Cancer Research

A Phase 2/3 Multicenter, Randomized, Open-Label Study to Compare the Efficacy and Safety of Lenalidomide Versus Investigator’s Choice in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma

Myron S. Czuczman, Marek Trnený, Andrew Davies, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-16-2818

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2017/04/05/1078-0432.CCR-16-2818.DC1

Cited articles
This article cites 34 articles, 17 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/23/15/4127.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/23/15/4127.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/23/15/4127
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.