PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma

Ombretta Melaiu¹, Marco Mina²,³, Marco Chierici², Renata Boldrini⁴, Giuseppe Jurman², Paolo Romani¹, Valerio D’Alicandro¹, Maria C. Benedetti⁴, Aurora Castellano⁵, Tao Liu⁶, Cesare Furlanello², Franco Locatelli⁵,⁷, and Doriana Fruci¹

Abstract

Purpose: This study sought to evaluate the expression of programmed cell death-ligand-1 (PD-L1) and HLA class I on neuroblastoma cells and programmed cell death-1 (PD-1) and lymphocyte activation gene 3 (LAG3) on tumor-infiltrating lymphocytes to better define patient risk stratification and understand whether this tumor may benefit from therapies targeting immune checkpoint molecules.

Experimental Design: In situ IHC staining for PD-L1, HLA class I, PD-1, and LAG3 was assessed in 77 neuroblastoma specimens, previously characterized for tumor-infiltrating T-cell density and correlated with clinical outcome. Surface expression of PD-L1 was evaluated by flow cytometry and IHC in neuroblastoma cell lines and tumors genetically and/or pharmacologically inhibited for MYC and MYCN. A dataset of 477 human primary neuroblastomas from GEO and ArrayExpress databases was explored for PD-L1, MYC, and MYCN correlation.

Results: Multivariate Cox regression analysis demonstrated that the combination of PD-L1 and HLA class I tumor cell density is a prognostic biomarker for predicting overall survival in neuroblastoma patients (P = 0.0448). MYC and MYCN control the expression of PD-L1 in neuroblastoma cells both in vitro and in vivo. Consistently, abundance of PD-L1 transcript correlates with MYC expression in primary neuroblastoma.

Conclusions: The combination of PD-L1 and HLA class I represents a novel prognostic biomarker for neuroblastoma. Pharmacologic inhibition of MYCN and MYC may be exploited to target PD-L1 and restore an efficient antitumor immunity in high-risk neuroblastoma. Clin Cancer Res; 23(15): 4462–72. ©2017 AACR.

Introduction

The prognostic value of tumor-infiltrating immune cells has been extensively demonstrated in several human cancers (1). According to in situ IHC analysis, all types of immune cells can infiltrate tumors, either promoting or inhibiting their progression. In general, high density of effector and memory T cells has been correlated with good clinical outcome (2, 3), whereas the prevalence of myeloid cells is associated with poor prognosis (4). Anticancer immunity can be impaired by a variety of immunosuppressive pathways, including the expression of inhibitory checkpoint receptors, such as programmed cell death-1 (PD-1), cytotoxic T lymphocyte–associated protein 4 (CTLA-4), and lymphocyte activation gene 3 (LAG3), which limit the effector function of T cells by interacting with their ligands expressed on a wide range of tumor cells (5–7). Blockade of PD-1 and programmed cell death-ligand-1 (PD-L1) by mAbs has provided encouraging results, especially in tumors characterized by high density of infiltrating T cells, detectable levels of PD-L1, and tumor-specific neoantigens (8–11). All these features have been shown to be predictive of a response to PD-1/PD-L1–blocking antibodies (10).

Despite the promising results on certain tumors in adults (11), little is known about the therapeutic potential of immune checkpoint inhibitors in neuroblastoma, the most common pediatric extracranial solid tumor, mainly occurring in children under the age of 5 years and accounting for 15% of childhood cancer-related death. Neuroblastoma displays the highest rate of spontaneous regression observed among human cancers, and one possible explanation for this phenomenon is the induction of patients’ immune responses toward their own tumor cells (12). Consistent with this hypothesis, we have recently shown that tumor-infiltrating T cells have a prognostic value independent of the current criteria used for risk stratification of neuroblastoma (13). However, it is still unknown whether this antitumor immunity could benefit from treatment with immune checkpoint inhibitors. Few
Tumor samples from 77 neuroblastoma patients diagnosed between 2002 and 2015 at the Bambino Gesù Children’s Hospital (Rome, Italy) were used. All tissues were obtained at diagnosis and prior to any therapy. Written informed parental consent was obtained for each patient in accordance with the Declaration of Helsinki. The study was approved by the Ethical Committee of the Institution. Clinical information is detailed in Supplementary Table S1. Diagnosis and histology were performed according to the International Neuroblastoma Staging System (INSS) and the International Neuroblastoma Pathology Classification (17, 18), respectively. MYCN and 1p status were evaluated following current guidelines (19). Patients were treated according to protocols active for different risk groups (20–23). Two high-risk patients were treated with anti-GD2 antibody and IL-2 according to the HR-NBL-1/SIOPEN protocol (ClinicalTrials.gov Identifier: NCT01704716). Both patients are alive at 2 and 5 years from the diagnosis, respectively.

Antibodies, flow cytometry, and immunoblotting

The following antibodies were used: PD-L1 (RBT-PDL1, Bio SB), β2m-free HLA-I heavy chains (HC10; ref. 24), PD-1 (NAT105, ScyTek Laboratories), LAG3 (EPR4392(2), Abcam), and MYCN (TAA51452, OriGene) for IHC; MYCN, actin (B8.4. B and I-19, respectively, Santa Cruz Biotechnology), and MYC (Y69, OriGene) for Western blotting; PD-L1 (MH11, BD Biosciences) for flow cytometry. Apoptosis was detected by staining with APC-conjugated Annexin V and propidium iodide (BD Biosciences). Flow cytometry was performed on BD LSR Fortessa X20 with FACSDiva Software (BD Biosciences). Whole-cell extracts were obtained, quantified, and used as described previously (25).

IHC and acquisition

Formaldehyde-fixed paraffin-embedded blocks were cut into 4-μm sections and stored at 4°C until IHC evaluation was performed. Sections were baked for 60 minutes at 56°C in a dehydration oven, and antigen retrieval and deparaffinization were carried out on a PT-Link (Dako) using the EnVision FLEX Target Retrieval Solution Kits at high or low pH (Dako), as per the manufacturer’s instructions. Following unmasking, slides were blocked for endogenous peroxidase for 10 minutes with a peroxidase blocking solution (Dako), rinsed in the appropriate wash buffer (Dako), and incubated for 30 minutes with 5% PBS/BSA. Slides were then incubated overnight at 4°C with primary antibodies. This step was followed by incubation with secondary antibody coupled with peroxidase (Dako) for 20 minutes. Bound peroxidase was detected with diaminobenzidine solution and EnVision FLEX Substrate buffer containing peroxide (Dako). Tissue sections were counterstained with EnVision FLEX hematoxylin (Dako). Sections of normal tissues were used as positive controls (Supplementary Fig. S1A-D). Isotype-matched mouse mAbs were used as negative controls. Slides were analyzed using an image analysis workstation (D-SIGHT Menarini Diagnostic). The density of PD-L1+ and HLA-I+ tumor cells and tumor-infiltrating lymphocytes was recorded by two blinded examiners as the number of positive cells per unit tissue surface area (mm²). The mean of positive cells detected in 10 fields for each sample was used in the downstream statistical analysis. Each quantity x was converted to the log scale with the formula \(y = \ln (x + 1) / (1 + x) \) to allow the transformation of any nonnegative value.

Cell lines, mice, and reagents

Human neuroblastoma cell lines were obtained in 2014 as follows: IMR-32, SK-N-BE(2), SH-EP, SH-SY5Y, SK-N-AS, and SK-N-SH from the ATCC, LA-N-1 from Creative Bioarray; KCNR from Children’s Oncology Group Cell Culture, DSMZ, ACN, and GICAN from Interlab Cell Line Collection, Banca Biologica, and Cell Factory. Tet-21/N cell line was kindly provided by Dr M. Schwab (University of Tübingen, Tübingen, Germany). All cells were grown in RPMI1640 medium, last authenticated by HLA-I...
tying (PCR-SSP, Genovision), and last tested for mycoplasma contamination (Venorgem OneStep Kit, Minerva Biolabs) in mid-2016. For in vitro studies, animal experiments were conducted under the auspices of protocols approved by the Animal Care and Ethics Committee of the University of New South Wales (New South Wales, Australia). Tissue sections of SK-N-BE (2) xenografts from 5- to 6-week-old female Balb/c mice treated with control solvent or JQ1 (4 and 6 mice, respectively; ref. 26) were stained with MYCN and PD-L1 antibodies. JQ1 (Sellbeck) was dissolved in DMSO and used at concentrations were stained with MYCN and PD-L1 antibodies. JQ1 (Sellbeck) was dissolved in DMSO and used at concentrations were stained with MYCN and PD-L1 antibodies. JQ1 (Sellbeck) was dissolved in DMSO and used at concentrations were stained with MYCN and PD-L1 antibodies.

Lentiviral infection

Tumor cells were infected with lentiviral particles generated as described previously (27) with a nontarget shRNA control vector (SHC002) or MYC shRNA (clone ID: TRC0000039642; Sigma-Aldrich).

Gene expression analysis

Agilent microarray gene expression data of 477 neuroblastoma patients (392 MYCN nonamplified, 83 MYCN amplified, 2 not evaluated; refs. 28, 29) were quantile normalized using the limma R package and then corrected for batch effects by the ComBat R package before downstream analysis.

Statistical analysis

The Kaplan–Meier method was used for the estimation of overall survival (OS), relapse-free survival (RFS), and event-free survival (EFS) curves. The log-rank test, as implemented in the survival R package, was used to compare OS, RFS, and EFS between different groups of patients as described previously (13). Survival analysis was first performed in a univariate fashion, feature by feature. In the case of continuous variables (e.g., PD-L1, HLA-I), unless otherwise specified, the optimal threshold yielding the best dichotomic patient stratification was selected. The Siegmund–Miller minimal P value correction (30) was used to reduce type I errors, using 0.1 as high and low epsilon coefficients. For PD-1 and LAG3, patients were stratified according to the median of their distribution. For consistency and to avoid overfitting, in multivariate survival analysis, patients were stratified using, for each variable, the threshold selected in the respective univariate survival analysis. Student t test was used to compare density of T-cell subsets between INSS stages. Linear regression analysis was performed using the lm and glm methods of the stats and MASS R libraries, respectively. Statistical analyses were performed in the R software environment. Variables reaching P < 0.05 in univariate analysis were included in Cox proportional hazards regression models using a backward stepwise selection. Results from the in vitro assays were statistically evaluated using a two-tailed Student t test.

Results

Density of PD-L1+ tumor cells correlates with clinical outcome of neuroblastoma

To evaluate the biological and clinical significance of PD-L1 expression on neuroblastoma, we performed IHC analysis on a cohort of 77 neuroblastoma samples, previously characterized for type, density, and composition of tumor-infiltrating T cells (13). PD-L1 showed marked heterogeneity in neuroblastoma specimens with intense membrane staining associated with weak cytoplasmic staining (Fig. 1A). PD-L1 status was defined as positive when, on average, at least 1 tumor cell per mm2 exhibited membrane staining. There were 51 specimens (66%) with none or, on average, less than 1 PD-L1+ tumor cell per mm2 and 26 samples with more than 1 PD-L1+ tumor cell per mm2. As shown in the PD-L1 density plot (Fig. 1B), deceased patients (red dots) fall into two groups, which either did or did not express PD-L1 (7 and 10 patients, respectively). Survival analysis for up to 14 years after primary resection was performed by stratifying the subjects according to the optimal cut-off value for PD-L1 density selected with the minimum P value approach. No significant correlation was detected for OS, RFS, and EFS (log-rank P values: 0.501, 0.188, and 0.616, respectively, Fig. 1C; Supplementary Fig. S1E and S1F).

Next, we determined whether PD-L1+ tumor cell density was associated with the clinical outcome of neuroblastoma patients stratified according to the INSS. The distribution of PD-L1+ tumor cells was statistically different between INSS stages, with lower PD-L1 density correlating with a favorable prognosis (Fig. 1D). Of note, stages III and IV included patients with either very high or very low PD-L1+ tumor cell density (Fig. 1D).

Density of PD-L1+ and HLA-I+ tumor cells correlates with clinical outcome

High-risk neuroblastomas are associated with low HLA-I expression (31). As reduced HLA-I expression, by impairing cytotoxic T-cell function, yields a functional effect similar to that of PD-L1 overexpression, HLA-I expression was investigated by IHC in the same cohort of patients and correlated with PD-L1 tumor cell density. HLA-I+ tumor cells exhibited membrane staining. Twenty-nine specimens (40%) were HLA-I negative, and most of deceased patients (red dots) belong to this group (Fig. 1B). Survival analysis performed by stratifying the subjects according to the cut-off value of 5% for PD-L1+ tumor cells selected with the minimum P value approach revealed significant correlation with patient outcome. Specifically, HLA-I+ tumor cell density supported the stratification of patients into groups with different OS, RFS, and EFS (log-rank P values: 5.22 × 10−6, 7.34 × 10−3, and 7.1 × 10−3, respectively, Fig. 1C, Supplementary Fig. S1E and S1F). When patients were stratified according to the INSS, the distribution of HLA-I+ tumor cells was statistically different between INSS stages, with a higher HLA-I+ tumor cell density associated with less aggressive stages (Fig. 1D).

Interestingly, density of HLA-I+ tumor cells was inversely correlated with PD-L1 (r2 = 0.073, P = 0.04; Fig. 1E, gray line). This inverse correlation was even stronger when only PD-L1+ tumor samples were considered (r2 = 0.196, P = 0.038; Fig. 1E, red line). Of note, deceased patients (red plots) express less than 5% of HLA-I and either high or no PD-L1.

The complex relationship between PD-L1/HLA-I expression and clinical outcome prompted us to speculate about the existence of two populations in which PD-L1 and HLA-I play different roles: a first group of patients in which PD-L1 is absent and the clinical outcome is completely driven by HLA-I, and a second group where the presence of PD-L1 directly affects prognosis. To test this hypothesis, the contribution of the combined effect of PD-L1 and HLA-I was investigated. Patients were stratified according to PD-L1+ and HLA-I+ tumor cell densities. In the absence of PD-L1+ tumor cells (PD-L1−), density of HLA-I was significantly
PD-L1 Is a Prognostic Marker and a Therapeutic Target in NB

A favorable PD-L1/HLA-I combination correlates with better clinical outcome regardless of tumor-infiltrating T-cell density, MYCN amplification, INSS stage, and age

Next, we investigated whether PD-L1 and HLA-I tumor cell densities could improve the prediction of clinical outcome of patients when combined with variables known to affect patient survival, such as the abundance of tumor-infiltrating T cells (13), MYCN amplification, INSS stage, and age at diagnosis.

Survival analysis was performed by stratifying patients according to density of tumor-infiltrating T cells alone (log-rank P values for OS: 4.54 × 10⁻⁶, 4.35 × 10⁻⁵, and 0.583 for CD3⁺, CD4⁺, and CD8⁺ T cells, respectively), or in combination with PD-L1 and/or HLA-I (Fig. 2; Supplementary Fig. S2). High density of CD3⁺ T cells was associated with good prognosis regardless of PD-L1⁺ tumor cell density, whereas low density of CD3⁺ T cells was associated with worse prognosis, in particular in patients with high PD-L1⁺ tumor cell density (log-rank P values for OS: 0.01; Fig. 2B). Conversely, high density of HLA-I⁺ tumor cells was associated with better clinical outcome in patients with either high or low tumor-infiltrating CD3⁺ T cells (log-rank P value for OS: 7.3 × 10⁻⁵, Fig. 2C). Similarly, the good PD-L1⁺/HLA-I combination was associated with better prognosis regardless of tumor-infiltrating CD3⁺ T-cell density (log-rank P values for OS: 4.9 × 10⁻⁵, Fig. 2D). Similar results were observed with tumor-infiltrating CD4⁺ T-cell density (log-rank P values for OS: 0.01, 1 × 10⁻⁴, and 8.5 × 10⁻⁵, with PD-L1, HLA-I, and PD-L1/HLA-I combination, respectively, Supplementary Fig. S2B–S2D). Conversely, high density of CD8⁺ T cells did not improve patient stratification when combined with PD-L1 (log-rank P value for OS: 0.433), whereas it was associated with better prognosis when combined with high HLA-I or good PD-L1/HLA-I, and worse prognosis when combined with low HLA-I or poor PD-L1/HLA-I (log-rank P values for OS: 2.7 × 10⁻⁴ and 1.03 × 10⁻⁸).

25th to 75th percentile; the horizontal lines inside the box represent the median; the whiskers extend to the most extreme data point, which is no more than 1.5 times the interquartile range from the box; and the dots are individual samples. 25th to 75th percentile; the horizontal lines inside the box represent the median; the whiskers extend to the most extreme data point, which is no more than 1.5 times the interquartile range from the box; and the dots are individual samples.

www.aacrjournals.org Clin Cancer Res; 23(15) August 1, 2017

Figure 1.

PD-L1⁺ and HLA-I⁺ tumor cell densities are associated with clinical outcome in neuroblastoma. A, Representative examples of PD-L1⁺ and HLA-I⁺ cell staining in primary neuroblastoma lesions. Brown, PD-L1⁺ and HLA-I⁺ cells. Nuclei are counterstained with hematoxylin (blue). Black arrows, PD-L1⁺ and HLA-I⁺ tumor cells; red arrows, HLA-I⁺ endothelial cells. Original magnification, ×20. Scale bar, 30 μm. B, Density plot of PD-L1⁺ and HLA-I⁺ tumor cells in neuroblastoma samples. Black and red dots, children who are alive and dead, respectively; gray plot, density of PD-L1⁺ or HLA-I⁺ tumor cells in all patients; red line, density of PD-L1⁺ tumor cells in dead patients. C, Kaplan–Meier curves show the duration of OS according to the PD-L1⁺ or HLA-I⁺ tumor cell densities. High (Hi) and low (Lo) PD-L1⁺ and HLA-I⁺ cell densities were plotted according to the cut-off values that yielded the minimum P values for OS. D, Box plots of the PD-L1⁺ and HLA-I⁺ tumor cell densities according to the INSS stages. The boxes show the
respectively. Supplementary Fig. S2F–S2H). Significant P values were also observed for PD-L1/HLA-I combined with density of infiltrating CD3+, CD4+, and CD8+ T-cell subsets for predicting RFS and EFS (log-rank P values: $5.4 \times 10^{-5}, 9.8 \times 10^{-5}$, and 6.6×10^{-5}, respectively for RFS, and $2.04 \times 10^{-3}, 3.94 \times 10^{-3}$, and 1.27×10^{-6}, respectively for EFS, Supplementary Fig. S3).

Density of PD-1+ and LAG3+ infiltrating lymphocytes was evaluated in the same cohort of patients by IHC analysis (Fig. 3A) and correlated with PD-L1+ and/or HLA-I+ tumor cell densities. The number of PD-1+ and LAG3+ infiltrating lymphocytes was proportional to the density of TILs (P values: 2×10^{-16} and 2×10^{-16} for PD-1 and LAG3, respectively) and lymphoid aggregates (Fig. 3B; Supplementary Fig. S4A). On average, 16% of TILs expressed PD-1, whereas 24% expressed LAG3. Survival analysis performed by stratifying patients according to the median cut-off values of PD-1+ and LAG3+ lymphocyte densities did not significantly correlate with patient outcome (log-rank P values: 0.17 and 6.7×10^{-2}, respectively, Supplementary Fig. S4B). The distribution of PD-1 lymphocytes was statistically different between INSS stages (Fig. 3C). Of note, density of PD-1+ lymphocytes was inversely correlated with PD-L1+ tumor cell density ($r^2 = 0.389, P = 0.0017$, Fig. 3D, red line).

High density of PD-1+ and LAG3+ infiltrating lymphocytes did not improve patient stratification when combined with PD-L1+ (log-rank P values: 0.2 and 0.19, respectively), or HLA-I+ tumor cell densities (log-rank P values: 1.06×10^{-4} and 9.6×10^{-5}, respectively; Supplementary Fig. S4C and S4D). Conversely, the good PD-L1/HLA-I combination was associated with better OS, RFS, and EFS regardless of PD-1+ and LAG3+ lymphocyte densities (log-rank P values: 5.3×10^{-6} and 9.8×10^{-6} for OS, 3.34×10^{-7} and 2.66×10^{-2} for RFS, and 1.21×10^{-3} and 8.36×10^{-4} for EFS, respectively, Fig. 3E; Supplementary Fig. S4E–S4H).

To determine whether favorable PD-L1/HLA-I combination was associated with better prognosis of MYCN-amplified neuroblastoma patients, survival analysis was performed by stratifying patients according to the MYCN status alone (log-rank P value: 1.1×10^{-5}, Fig. 4A), or in combination with PD-L1+ and/or HLA-I+ Density of PD-L1+ or HLA-I+ tumor cells affects prognosis of both MYCN-amplified and nonamplified neuroblastoma patients (log-rank P values for OS: 1.68×10^{-3} and 4.47×10^{-5}, respectively, Supplementary Fig. S5A and S5B). Specifically, the absence or low PD-L1+ and high HLA-I+ tumor cell densities were associated with better survival of both MYCN-amplified and nonamplified neuroblastoma patients.
Figure 3.
Favorable PD-L1/HLA-I combination associates with better clinical outcome in neuroblastoma regardless of tumor-infiltrating PD-1⁺ and LAG3⁺ lymphocyte densities. A, Representative examples of PD-1⁺ and LAG3⁺ cell staining in primary neuroblastoma lesions. Brown, PD-1 and LAG3-expressing lymphocytes. Nuclei are counterstained with hematoxylin (blue). Black arrows, PD-1⁺ and LAG3⁺ lymphocytes localized in lymphoid aggregates or scattered in the neuroblastoma tissue. Original magnification, ×20. Scale bar, 30 μm. B, Scatter plots showing the correlation between the total number of lymphocytes and PD-1⁺ or LAG3⁺ lymphocytes. C, Box plots of the PD-1⁺ and LAG3⁺ lymphocyte densities according to the INSS stages. D, Scatter plot showing the correlation between density of PD-1⁺ infiltrating lymphocytes and PD-L1⁺ tumor cells. Dashed line, PD-L1 threshold of 0.406; red and gray lines, best-fit linear lines of the scatter plot for PD-L1⁺ expressing patients and all patients, respectively. E, Kaplan-Meier curves of OS of patients according to the combined density of PD-L1⁺ and HLA-I⁺ tumor cells with PD-1⁺ or LAG3⁺ infiltrating lymphocytes. Gray arrows, increased OS between the selected groups. *, P < 0.05; ***, P < 0.0001.
Accordingly, a good PD-L1/HLA-I combination correlated with better clinical outcome (log-rank P value: 2×10^{-8}, Fig. 4D). The presence of a "good" PD-L1/HLA-I combination was associated with a better survival of both nonamplified and MYCN-amplified neuroblastoma patients (26% and 73%, respectively).

Survival analysis performed by stratifying patients according to the INSS stage alone (log-rank P value: 3.2×10^{-5}, Fig. 4C), or in combination with PD-L1 and/or HLA-I, revealed that density of PD-L1$^+$ tumor cells did not improve patient stratification when combined with INSS stage (log-rank P value: 3.6×10^{-6}).

Figure 4.
Favorable PD-L1/HLA-I combination associates with better clinical outcome in neuroblastoma regardless of MYCN amplification, stage, and age at diagnosis. A–F, Kaplan–Meier curves of OS according to the MYCN amplification status alone (A) or combined with PD-L1$^+$ and HLA-I$^+$ tumor cell densities (B), the INSS groups (stage I–III and IV S vs. stage IV) alone (C) or combined with PD-L1$^+$ and HLA-I$^+$ tumor cell densities (D), and the age at diagnosis alone (E) or combined with PD-L1$^+$ and HLA-I$^+$ tumor cell densities (F). Gray arrows, increased OS between the selected groups. ***, $P < 0.0001$.
MYC and MYCN regulate PD-L1 expression in neuroblastoma

The extremely variable expression of PD-L1 in stages III and IV neuroblastoma patients (Fig. 1D) suggests the existence of a complex mechanism of regulation. Recently, the MYC oncogene has been shown to induce PD-L1 expression in primary human samples of T-cell acute lymphoblastic leukemia (T-ALL; ref. 32). As MYC and MYCN share some transcriptional targets, we hypothesized that they both could regulate PD-L1 expression in neuroblastoma. To test this hypothesis, PD-L1 cell surface expression was evaluated in a panel of 10 human neuroblastoma cell lines expressing different levels of MYC and MYCN proteins (Fig. 5A and B). PD-L1 was expressed at high levels in three neuroblastoma cell lines (GICAN, SH-EP, and SK-N-AS) and at low levels in all other cell lines (Fig. 5B; Supplementary Fig. S7A).

Next, the effect of genetic and/or pharmacologic inhibition of MYC and MYCN on PD-L1 expression was investigated in SK-N-AS, LAN-1, and SK-N-BE(2) cell lines, which are mutually exclusive for MYC or MYCN expression, and in the neuroblastoma cell line SH-EP–derived Tet-21/N carrying a tetracycline-repressible MYCN transgene. MYC suppression by shRNA (shMYC) or IQ1 treatment significantly reduced PD-L1 surface expression in SK-N-AS and Tet21/N, as compared with control shRNA-transduced cells (shCTRL) and untreated cells (Fig. 5C; Supplementary Fig. S7B). Of note, IQ1 treatment did not induce apoptosis as evaluated by Annexin V (Supplementary Fig. S7C). Interestingly, PD-L1 surface expression was also significantly reduced in IQ1-treated LAN-1 and SK-N-BE(2) cells following MYCN protein reduction (Fig. 5E; Supplementary Fig. S7B). Consistent with these observations, suppression of MYCN by IQ1 resulted in a significant reduction of PD-L1 protein expression in SK-N-BE(2) xenografts (Fig. 5F), suggesting that both transcription factors regulate PD-L1 expression in neuroblastoma cells.

Finally, we explored a dataset of 477 human primary neuroblastomas from the FDA SEQC initiative publicly available in GEO and ArrayExpress databases (28, 29). Consistently with in vitro data, PD-L1 expression was significantly correlated with MYC expression (Fig. 6A), confirming what was observed in liver, renal, and colon carcinomas (32). An inverse correlation was detected between PD-L1 and MYCN and between MYCN and MYC, with MYCN-amplified samples (dark gray dots) expressing lower levels of both PD-L1 and MYC (Fig. 6B and C). Of note, no correlation was detected between MYCN and PD-L1 when only MYCN nonamplified samples were analyzed ($t^2 = 0.006, P = 0.12$), suggesting that other genes coamplified in the same region may exert an inhibitory effect.

Altogether, these data indicate that MYC and MYCN control the expression of PD-L1 in neuroblastoma and that therapies suppressing the function of both these transcription factors may be exploited to restore an immune response against this tumor.

Discussion

Recently, we showed that high T-cell infiltration correlates with favorable clinical outcome in high-risk neuroblastoma patients (13). Herein, we demonstrate that TILs express PD-1 and LAG3, two negative regulators of T-cell function (33), and that neuroblastoma cells either express PD-L1 or HLA-I. According to the density of PD-L1$^+$ and HLA-I$^+$ tumor cells and regardless of infiltrating T-cell density, MYCN amplification status, INSS stage, and age at diagnosis, we could distinguish two PD-L1/HLA-I combinations: one associated with good prognosis (high HLA-I and low or no PD-L1) and the other associated with poor prognosis (low HLA-I and high or no PD-L1). Our findings provide a proof of principle that PD-L1 in combination with HLA-I expression may serve as a biomarker in neuroblastoma, although this has to be further confirmed by a prospective study with a larger number of samples.

Of note, a good PD-L1/HLA-I combination was also associated with favorable clinical outcome in intrahepatic cholangiocarcinoma and hepatocellular carcinoma (34, 35). Consistently, clinical trials with drugs targeting the PD-1/PD-L1 pathway have demonstrated that PD-L1 tumor density alone, initially chosen as a criterion for enrolling patients, did not prove to be a reliable biomarker, because of its variable expression in response to changes in the inflammatory microenvironment (33, 36, 37).

Interestingly, we found that the density of PD-1$^+$ and LAG3$^+$ lymphocytes was proportional to that of tumor-infiltrating immune cells and mainly distributed in lymphoid aggregates, structures that resemble lymph nodes (38). Tumor-infiltrating T cells are reactive against immunogenic tumor cells, namely tumor cells that display on their surface HLA-I molecules loaded with antigens derived either from proteins normally expressed in other tissues, or originated from point mutations in normal genes (8). According to a recent tumor genome meta-analysis, the amount...
of mutations predicted to be immunogenic correlated with increased patient survival, higher T-cell infiltration, and the presence of neoantigens in proportion to the tumor mutational load (39). Although high-risk neuroblastomas harbor low genetic complexity, with significant mutations in only few genes, the intratumoral genetic heterogeneity due to germline variants and/or copy number alterations results in the expression of potentially immunogenic tumor antigens, such as MYCN, MYC, and ALK (40–42). Accordingly, CD8\(^+\) T cells reactive toward MYCN, MYC, and ALK epitopes were detected in neuroblastoma, Burkitt lymphoma, and ALK-rearranged lymphoma patients, respectively, and were found to be associated with a decreased risk of relapse in some patients (43–47).

Although PD-L1 expression has been investigated in a wide range of tumors, the mechanism that controls its constitutive expression remained unclear. Several factors have been found to control PD-L1 expression (32, 48–50). Here, we report a new role for MYC and MYCN in regulating PD-L1 expression in neuroblastoma cells. Functional inhibition of MYC and/or MYCN by shRNA knockdown or JQ1 treatment resulted in a significant reduction of PD-L1 surface expression in neuroblastoma both in vitro and in vivo, thus suggesting that JQ1 (or related compounds...
in clinical trials) might be well suited for neuroblastoma as both a targeted agent and an immunotherapeutic agent. Recently, Casey and colleagues showed that MYC regulates PD-L1 expression in human T-ALL samples through direct binding to its promoter (32). Consistently, we showed that MYC gene expression significantly correlated with PD-L1 transcript in a large cohort of neuroblastoma patients. In contrast, MYCN gene expression did not appear to correlate with PD-L1. We speculated that genes coamplified with MYCN could exert this inhibitory effect. Indeed, we found that most of the MYCN-amplified neuroblastoma cell lines and primary tissues lack PD-L1 expression.

In summary, our study demonstrates that (i) PD-L1 is expressed in neuroblastoma and is inversely correlated with HLA-I; (ii) the combination of PD-L1/HLA-I is a robust marker to predict clinical outcome; and (iii) MYC and MYCN regulate PD-L1 expression in neuroblastoma both in vitro and in vivo, indicating that their pharmacologic inhibition may represent a novel treatment strategy for targeting PD-L1 expression in high-risk neuroblastoma patients. In addition, these findings may be useful to predict neuroblastoma patients that will respond better to immunotherapy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: O. Melau, F. Locatelli, D. Fruci
Development of methodology: O. Melau, M. Mina, P. Romania, V. D’Alicandro, M. C. Benedetti, D. Fruci
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): O. Melau, R. Boldrini, P. Romania, V. D’Alicandro, A. Castellano, T. Liu, D. Fruci
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): O. Melau, M. Mina, M. Chierici, R. Boldrini, G. Jurman, C. Furlanello, D. Fruci
Writing, review, and/or revision of the manuscript: O. Melau, M. Chierici, G. Jurman, P. Romania, V. D’Alicandro, C. Furlanello, F. Locatelli, D. Fruci
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Mina, D. Fruci
Study supervision: F. Locatelli, D. Fruci

Acknowledgments

We thank P. Giacomini for providing reagents and M. Scarsella and M. Pezzullo for technical assistance.

Grant Support

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC, Milan, Italy) grants #18495 (to D. Fruci) and #9962 (to F. Locatelli), Italian Ministry of Health (Rome, Italy) grant PE-2011-02351866 (to D. Fruci), and Fondazione Italiana per la Lotta al Neuroblastoma (to F. Locatelli). This research was also supported by a fellowship from the Fondazione Umberto Veronesi (to O. Melau).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 16, 2016; revised November 21, 2016; accepted March 1, 2017; published OnlineFirst March 7, 2017.

References

11. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immuno-
14. Chowdhury F, Dunn S, Mitchell S, Mellows T, Ashton-Key M, Gray JC. PD-
16. Dondero A, Pastorino F, Della Chiesa M, Corrias MV, Morandi F, Pistoia V,
19. Mathew P, Valentine MB, Bowman LC, Rowe ST, Nash MB, Valentine VA,
24. Stam NJ, Spits H, Ploegh HL. Monoclonal antibodies raised against
7. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade
2015;14:561–570.
26. Pardoll DM. The blockade of immune checkpoints in cancer immuno-
25. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common
50. Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG, Allegrezza MJ,
49. Dorand RD, Nthale J, Myers JT, Barkauskas DS, Avril S, Chirieleison SM,
48. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-
43. Himoudi N, Yan M, Papanastasiou A, Anderson J. MYCN as a target for
46. Ait-Tahar K, Cerundolo V, Banham AH, Hatton C, Blanchard T, Kusec R,
37. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-
26. Pardoll DM. The blockade of immune checkpoints in cancer immuno-
25. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common
24. Stam NJ, Spits H, Ploegh HL. Monoclonal antibodies raised against
19. Mathew P, Valentine MB, Bowman LC, Rowe ST, Nash MB, Valentine VA,
16. Dondero A, Pastorino F, Della Chiesa M, Corrias MV, Morandi F, Pistoia V,
14. Chowdhury F, Dunn S, Mitchell S, Mellows T, Ashton-Key M, Gray JC. PD-
12. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immuno-
11. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immuno-
9. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade
7. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade
6. Pardoll DM. The blockade of immune checkpoints in cancer immuno-
5. Pardoll DM. The blockade of immune checkpoints in cancer immuno-
4. Chowdhury F, Dunn S, Mitchell S, Mellows T, Ashton-Key M, Gray JC. PD-
2. Chowdhury F, Dunn S, Mitchell S, Mellows T, Ashton-Key M, Gray JC. PD-
1. Pardoll DM. The blockade of immune checkpoints in cancer immuno-

Clin Cancer Res; 23(15) August 1, 2017
Clinical Cancer Research

Meliau et al.

Published OnlineFirst March 7, 2017; DOI: 10.1158/1078-0432.CCR-16-2601

Downloaded from clincancerres.aacrjournals.org on July 29, 2021. © 2017 American Association for Cancer Research.