FCGR SNPs Affect Response to High-Dose IL2 in mRCC

Fc-gamma receptor (FCGR) genotypes have been shown to influence patient outcome following treatment with mAb-based immunotherapeutics in different cancer settings. Erbe and colleagues show that those FCGR SNP genotypes (FCGR2A, FCGR3A, and FCGR2C) related to greater FCGR function, associate with better response following treatment with IL2 (i.e., not an mAb-based immunotherapeutic) for metastatic renal cell carcinoma patients. This work raises important questions regarding endogenous antibody responses potentially involved, either in ADCC or in antibody facilitated antigen presentation, in a variety of therapies where a role for endogenous antibody influence was not previously considered.

See article by Erbe et al., p. 2159

MYD88 L265P and non-L265P DLBCL Genomic Profiles

MYD88 mutations, notably the L265P variant, are a distinguishing feature of ABC subtype DLBCL. To explore the genomic profiles of MYD88 mutant DLBCL, Dubois and colleagues studied 361 DLBCL cases submitted to next generation sequencing, gene expression profiling, and clinical and prognostic analyses. Distinct genomic profiles for MYD88 L265P and non-L265P mutant DLBCL were highlighted; clustering analysis also segregated subgroups per associated alterations among patients with the same MYD88 mutation. Importantly, the survival of MYD88 L265P mutant ABC DLBCL was significantly improved by associated CD79B mutations. This study emphasizes the importance of genomic profiling to stratify patients for targeted therapy.

See article by Dubois et al., p. 2232

Multiplex Genome Editing to Generate Universal CAR T Cells

Ren and colleagues established a method of high-efficient multiplex CRISPR/Cas9 editing to create triple-disrupted CAR T cells by electroporating the CAR T cells with RNA of CAS9 and gRNAs. The study shows the simultaneous and highly efficient disruption of the TCR and HLA expression so that universal CAR T cells can be produced. Checkpoint-resistant universal CAR T cells via additional disruption of PD1 showed improved antitumor efficacy in preclinical mouse models. The study shows highly efficient triple ablation (80%) in primary human T cells and that the efficiency of multiplex genetic editing has been sufficient to support future clinical trials.

See article by Ren et al., p. 2255

Rab37/TSP1 Inhibits Angiogenesis and Metastasis

Cancer cells shape the microenvironment to promote malignancy by secreted factors. Tzeng and colleagues show that Rab37 small GTPase mediates the cross-talk between cancer cells and endothelial cells via exocytosis of antiangiogenic thrombospondin-1 (TSP1) for suppressing neoangiogenesis in esophageal squamous cell carcinoma (ESCC). Rab37-mediated exocytosis of TSP1 from cancer cells inhibited the activation of FAK/paxillin/ERK migration signaling in both cancer cells and their surrounding endothelial cells. Dysfunction of Rab37/TSP1 axis impaired the suppressive effects on tumor neovasculature and correlated with poor prognosis. The findings indicate a potential therapeutic value of targeting this pathway to treat ESCC.

See article by Tzeng et al., p. 2335
Clinical Cancer Research

Highlights of This Issue

Clin Cancer Res 2017;23:2129.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/23/9/2129

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/23/9/2129.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.