Complete and Durable Responses in Primary Central Nervous System Posttransplant Lymphoproliferative Disorder with Zidovudine, Ganciclovir, Rituximab, and Dexamethasone

Abstract

Purpose: Primary central nervous system posttransplant lymphoproliferative disorder (PCNS-PTLD) is a complication of solid organ transplantation with a poor prognosis and typically associated with Epstein–Barr virus (EBV). We hypothesized EBV lytic-phase protein expression would allow successful treatment with antiviral therapy.

Patients and Methods: Thirteen patients were treated with zidovudine (AZT), ganciclovir (GCV), dexamethasone, and rituximab in EBV+ PCNS-PTLD. Twice-daily, intravenous AZT 1,500 mg, GCV 5 mg/kg, and dexamethasone 10 mg were given for 14 days. Weekly rituximab 375 mg/m² was delivered for the first 4 weeks. Twice-daily valganciclovir 450 mg and AZT 300 mg started day 15. Lytic and latent protein expression was assessed using in situ hybridization and immunohistochemistry. Immunoblot assay assessed lytic gene activation. Cells transfected with lytic kinase vectors were assessed for sensitivity to our therapy using MTS tetrazolium and flow cytometry.

Results: The median time to response was 2 months. Median therapy duration was 26.5 months. Median follow-up was 52 months. The estimated 2-year overall survival (OS) was 76.9% (95% CI, 44.2%–91.9%). Overall response rate (ORR) was 92% (95% CI, 64%–100%). BXLF1/vTK and BGLF4 expression was found in the seven tumor biopsies evaluated. Lytic gene expression was induced in vitro using the four-drug regimen. Transfection with viral kinase cDNA increased cellular sensitivity to antiviral therapy.

Conclusions: EBV+ PCNS-PTLD expressed lytic kinases and therapy with AZT, GCV, rituximab and dexamethasone provided durable responses. Induction of the lytic protein expression and increased cellular sensitivity to antiviral therapy after transfection with viral kinase cDNA provides a mechanistic rationale for our approach.

Introduction

The Epstein–Barr virus (EBV) is a ubiquitous, lymphotropic gammaherpes virus implicated in nasopharyngeal and gastric carcinomas and lymphoproliferative disorders (1, 2). Some Hodgkin and non-Hodgkin B-cell neoplasms are considered “EBV-associated” based on detection of EBV-encoded RNA in tumor tissue by in situ hybridization (EBER-ISH; refs. 3, 4). Over 90% of PCNS-PTLD cases show EBV association by immunohistochemistry (5). Patients with acquired, iatrogenic, or congenital immunodeficiency are at increased risk of developing an EBV-associated B-cell neoplasm (6). In several preclinical models including the severe-combined immunodeficiency (SCID) mouse engrafted with human peripheral blood leukocytes, the injection of human leukocytes from a seropositive EBV donor frequently leads to EBV-associated lymphoproliferative disorders (LPD) like that seen in PTLD. The spontaneous development of EBV-associated LPD can be treated or prevented with the addition of EBV-specific therapy highlighting the relevance of this virus as a driver of lymphomagenesis (7–10).

PCNS-PTLD is a rare complication encountered in patients receiving iatrogenic immunosuppression after solid organ transplantation (SOT) and portends a poor prognosis with estimated 3-year survival rates between 32% and 38% in multicenter retrospective analyses (11–13). For decades, the standard treatment of care has included whole brain...
Translational Relevance

Primary central nervous system posttransplant lymphoproliferative disorder (PCNS-PTLD) is a rare disorder that arises in immunosuppressed patients and is associated with poor outcomes. Treatment options include high-dose methotrexate or radiation, which are often poorly tolerated in this population. PCNS-PTLD is universally associated with the Epstein–Barr virus and prior clinical work has suggested that this subtype of lymphoma can express viral lytic kinase proteins that may confer sensitivity to nucleoside analogue antiviral therapy. Here, we document expression of lytic kinase proteins in PCNS-PTLD tumors and demonstrate robust and sustained clinical activity and tolerability of an antiviral based regimen delivered over a 2-week period. Supporting mechanistic laboratory data provides a rationale for considering this approach in patients with PCNS-PTLD. We believe this therapeutic approach to be a reasonable upfront strategy for patients who may not be candidates for high-dose methotrexate.

Patients and Methods

Eligibility

Patients with biopsy-proven EBV+ PCNS-PTLD following SOT were eligible for treatment. Use of this regimen was approved by our institutional IRB. Research was conducted in accordance with recognized ethical guidelines and approved by the Ohio State University institutional review board. Each patient provided written informed consent. Patients were treated at The Ohio State University between January 1998 and December 2015. Patient data were collected retrospectively from the electronic medical record. Data collected included demographic, pathology, treatment, response to treatment, treatment toxicities, and survival outcomes (Table 1). Isolated CNS involvement was confirmed by whole body computed tomography and fludeoxyglucose-positron emission tomography (FDG-PET). Patients were required to have an absolute neutrophil count greater than 1,000/mm³ and a platelet count greater than 50,000/mm³ prior to study enrollment. Patients with poor performance status (i.e., ECOG 3+), unable to consent to treatment, inability to tolerate any drug in this regimen, CNS/systemic infection, or cytopenia on presentations were excluded.

Medication administration

The treatment schema is outlined in Supplementary Fig. S1. Immune-suppressive medication was reduced in all patients prior to starting treatment for PTLD. Immune-suppressive medication was reduced by half and then discontinued 1-week later in accordance with recommendations provided by the transplant team. Intravenous GCV and AZT were administered at doses of 5 mg/kg twice daily and 1,500 mg twice daily, respectively, along with dexamethasone 10 mg IV twice daily for the first 2 weeks. On day 15, patients were transitioned to maintenance oral dosing of GCV 1,000 mg three times daily or valganciclovir 450 mg twice daily and AZT 300 mg twice daily. Dexamethasone was tapered over a 2-week period after the initial 2-week induction phase. Maintenance therapy was continued until disease progression or development of treatment-limiting toxicities. Maintenance therapy was held for up to 7 days for cytopenias and then restarted at the original dose if resolved. If grade 3 to 4 hematologic toxicities were persistent patients were restarted at once daily dosing for a 50% dose reduction (see Table 2; Supplementary Table S1). GCV and AZT were dose adjusted for preexisting renal and hepatic insufficiency. Four doses of rituximab were administered (375 mg/m²) on days 1, 8, 15, and 22.
Table 1. Clinical characteristics of 13 patients with PCNS-PTLD treated with AZT, GCV, rituximab, and dexamethasone

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Sex</th>
<th>Race</th>
<th>Transplant</th>
<th>Induction</th>
<th>Maintenance</th>
<th>Prior PTLD treatment</th>
<th>EBER</th>
<th>Pathology</th>
<th>Viral kinase expression (N = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>M</td>
<td>W</td>
<td>K</td>
<td>(’95, ’11)</td>
<td>ATG</td>
<td>Cellexpt/neoral prednisone</td>
<td>None</td>
<td>Positive</td>
<td>LYG III Not tested</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>M</td>
<td>W</td>
<td>KP</td>
<td>ATG</td>
<td>Myfortic/rapamune</td>
<td>Cellexpt (’97)</td>
<td>None</td>
<td>Positive</td>
<td>LYG III Yes</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>M</td>
<td>W</td>
<td>K</td>
<td>(’97, ’04)</td>
<td>Cellexpt (’97–04)</td>
<td>Cellexpt/rapamune</td>
<td>None</td>
<td>Positive</td>
<td>DLBCL Yes</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>M</td>
<td>W</td>
<td>K</td>
<td>(’77, ’02)</td>
<td>Unk</td>
<td>Imuran/cellexpt prednisone</td>
<td>None</td>
<td>Positive</td>
<td>DLBCL Yes</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>M</td>
<td>W</td>
<td>K</td>
<td>ATG</td>
<td>Myfortic/neoral</td>
<td>Cellexpt (’97)</td>
<td>None</td>
<td>Positive</td>
<td>LYG III Not tested</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
<td>F</td>
<td>K</td>
<td>W</td>
<td>ATG</td>
<td>Myfortic/neoral</td>
<td>Cellexpt (’97-04)</td>
<td>None</td>
<td>Positive</td>
<td>DLBCL Yes</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>F</td>
<td>W</td>
<td>K</td>
<td>Cellexpt</td>
<td>Cellcept/rapamune</td>
<td>Cellexpt/neoral prednisone</td>
<td>WBRD</td>
<td>Positive</td>
<td>DLBCL Yes</td>
</tr>
<tr>
<td>8</td>
<td>61</td>
<td>F</td>
<td>B</td>
<td>L</td>
<td>Unk</td>
<td>Cellcept/neoral prednisone</td>
<td>Cellcept (’97–04)</td>
<td>None</td>
<td>Positive</td>
<td>LYG III Not tested</td>
</tr>
<tr>
<td>9</td>
<td>61</td>
<td>F</td>
<td>B</td>
<td>L</td>
<td>Unk</td>
<td>Cellcept/neoral prednisone</td>
<td>Cellcept (’97–04)</td>
<td>None</td>
<td>Positive</td>
<td>LYG III Not tested</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>M</td>
<td>W</td>
<td>KP</td>
<td>ATG</td>
<td>Myfortic/rapamune</td>
<td>Positive</td>
<td>LYG III Not tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>72</td>
<td>F</td>
<td>W</td>
<td>K</td>
<td>ATG</td>
<td>Myfortic/rapamune</td>
<td>Positive</td>
<td>LYG III Not tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>M</td>
<td>W</td>
<td>K</td>
<td>Cellexpt</td>
<td>Cellcept/rapamune</td>
<td>Positive</td>
<td>LYG III Not tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>72</td>
<td>F</td>
<td>W</td>
<td>K</td>
<td>Unk</td>
<td>Cellcept/neoral prednisone</td>
<td>Cellcept (’97–04)</td>
<td>None</td>
<td>Positive</td>
<td>LYG III Not tested</td>
</tr>
</tbody>
</table>

Abbreviations: ATG, anti-thymocyte globulin; DLBCL, diffuse large b-cell lymphoma; K, kidney; KP, kidney-pancreas; LyG, lymphomatoid granulomatosis; WBRT, whole brain radiotherapy.

Toxicity assessment

Toxicities were assessed during induction and maintenance therapy as outlined in the National Cancer Institute Common Toxicity Criteria version 4.0. Patients were assessed by routine blood work for hematologic and biochemical toxicities and regular follow-up appointments were scheduled for assessment of all other toxicities. Frequency of follow-up appointments was at the treating physician’s discretion and ranged from 1 to 3 months.

Response assessment

All patients were initially evaluated with magnetic resonance imaging (MRI) of the brain and PET. Response was assessed based on serial brain MRI, beginning within 4 weeks from initiation of induction treatment and reassessed every month thereafter for 4 to 6 months when possible. Patients then underwent CNS imaging with MRI every 3 months for the first year and followed clinically after stable findings on imaging. No MRIs were performed during steroid therapy. Measurable lesions were required to be at least 2 cm in diameter (Fig. 1). Complete response (CR), partial response (PR), and progressive disease (PD) were defined according to the criteria published by Cheson and colleagues. A biopsy to confirm progression was not required; however, imaging or physical exam documenting progression in accordance with Cheson criteria was required (28).

In vitro analysis

In all cases, pathology was reviewed and characterized according to World Health Organization (WHO) criteria (29). For each available case, chromogenic in situ hybridization for EBER (EBER-ISH) was performed on formalin-fixed, paraffin-embedded (FFPE) tissue as described previously (30). EBER positivity (EBER+)

Table 2. Hematologic toxicities of 13 patients treated with AZT, GCV, rituximab, and dexamethasone

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Grade 1 (N)</th>
<th>Grade 2 (N)</th>
<th>Grade 3 (N)</th>
<th>Grade 4 (N)</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (7.7)</td>
<td>0 (0)</td>
<td>Grade 1</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>3 (23)</td>
<td>2 (15)</td>
<td>3 (23)</td>
<td>0 (0)</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>0 (0)</td>
<td>1 (7.7)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>3 (23)</td>
<td>0 (0)</td>
<td>1 (7.7)</td>
<td>2 (15)</td>
<td>Grade 4</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>3 (23)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>Grade 1</td>
</tr>
</tbody>
</table>

Toxicities were determined according to the National Cancer Institute Common Terminology Criteria Version 4.0.
flow cytometry using annexin V-FITC and propidium iodide (PI; BD Biosciences).

AZT, GCV, and dexamethasone were obtained from Sigma, while rituximab was obtained from Genentech, Inc. A range of concentrations for each nucleoside analogue was chosen to evaluate a dose-dependent response. Based on pharmacokinetic data reported in the package inserts, GCV reaches a serum concentration of 8 to 10 mcg/mL and AZT a concentration of ~20 mcg/mL after typical dosing (34, 35). These concentrations fall within the dosing parameters of the in vitro model. AffiniPure Goat Anti-Human IgG FC Fragment Specific was obtained from Jackson ImmunoResearch Laboratories, Inc. Polyclonal Rabbit Anti-Human IgG was obtained from Dako.

Statistical analyses

Given the small sample size, statistical analysis was largely descriptive. Overall response rate (ORR) was defined as the proportion of patients achieving CR or PR at the time of best response, and 95% binomial exact confidence interval was provided along with the proportion. Overall survival (OS) and progression-free survival (PFS) were defined as the time from start of treatment until progression or death, censoring patient without even at time of last follow-up. One patient was disease free for 10 years and then died from complications of colectomy. This event occurred at a time point later than the last follow-up of all living patients, so it was decided to censor this patient at 10 years to avoid the potential bias generated by this single event. Estimates of PFS and OS were obtained by the Kaplan–Meier method.

Results

Patient characteristics

Thirteen patients (seven male and six female) with a median age of 50 were treated from 1998 to 2015. Previous SOT history included kidney (N = 13), pancreas (N = 2), and liver (N = 1). One patient had two chronologically distinct kidney transplants, and two patients had simultaneous kidney/pancreas transplants for a total of 16 solid organ transplantations prior to the diagnosis of PCNS-PTLD. Two patients received a second kidney transplant after the successful treatment of PCNS-PTLD. These two kidney

Figure 1.
Three patients with complete response to AZT, GCV, rituximab, and dexamethasone and their corresponding MRIs before treatment and 4 weeks and 1 year after treatment.

Figure 2.
Representative results from three patients showing immunohistochemistry (IHC) and ISH depicting expression of latent and lytic proteins in anatomically distinct regions. A, Representative IHC (left) and ISH (right) for latent membrane protein (LMP) and lytic phase proteins BXL1 and BGLF4. Results are from patient 2 diagnosed with lymphomatoid granulomatosis (grade 3) and illustrate exclusive expression of latent and lytic gene products in distinct regions of the tumor infiltrate. B and C, Immunohistochemistry showing EBV+ PCNS-PTLD biopsies from two separate patients (B, Patient 6; lymphomatoid granulomatosis; C, Patient 3: diffuse large B-cell lymphoma) coexpressing CD20 and lytic phase protein BXL1 and BGLF4, respectively.

Dugan et al.
transplants were not included in the total number of organs transplanted. Fifty-four percent (7/13) of the patients were EBV seropositive (IgG+) prior to transplantation. As part of their SOT anti-rejection prophylaxis, patients received induction immunosuppressive therapy, which included anti-thymocyte globulin (54%), mycophenolate (23%), and other (23%). All patients were on maintenance immune suppression therapy at diagnosis of PCNS-PTLD. Maintenance immunosuppression at diagnosis is listed in Table 1 along with patient characteristics summary.

PCNS-PTLD tumor histologies included diffuse large B-cell lymphoma (DLBCL; 8/13) and grade 3 lymphomatoid granulomatosis (LyG; 5/13).

Treatment toxicity

Four patients required dose reduction of GCV, and one required reduction of AZT during induction. Patients requiring dose reductions in induction also required reduction in maintenance treatment. Two patients required discontinuation of AZT during maintenance treatment due to persistent transfusion-dependent anemia despite holding AZT for 7 days (grade 4). One patient had AZT discontinued due to nausea and vomiting resulting in acute kidney injury. No other significant nonhematologic toxicities were seen during induction or maintenance therapy. Full summaries of hematologic toxicities and dose reductions are found in Table 2 and Supplementary Table S1, respectively.
Clinical activity

The median duration of follow-up time for all patients who were still alive at last follow-up was 52 months (range, 21–120 months). The overall response rate (ORR) was 92% (95% CI, 64%–100%). Individual responses are summarized in Table 3. Nine patients achieved a complete response with a median time to response of 2 months (range, 1–6 months). Figure 1 shows three examples of patients who achieved CR and were disease free 1 year after starting maintenance therapy. Three patients had a partial response with a median time to response of 1.5 months. At final follow-up, eight of 13 patients were alive without evidence of progression while the remaining five patients had expired. Causes of death were related to septic shock ($n = 3$) and pulmonary embolism ($n = 2$). Four of five deaths occurred months (range, 9–141) after achieving CR ($n = 3$) or PR ($n = 1$) and were not attributed to AZT/GCV/rituximab/dexamethasone therapy or disease progression. Patient 4 was disease free for 145 months, but developed pseudomonal pneumonia after total colectomy for colon cancer and succumbed to septic shock. Patient 5 died in CR after suffering a pulmonary embolism and withdrawing cardiopulmonary support. After developing a PR, patient 6 also suffered a pulmonary embolism, was stabilized in the hospital, and then opted for home hospice given advanced age, multiple comorbidities including severe emphysema, and desire to be home with family. Patient 8 died in CR from septic shock. Only patient 9 was found to have progressive disease leading to endotracheal intubation for airway protection and hospital acquired infection, sepsis, and death in the ICU. This patient developed concomitant septic shock after 2 months of therapy. Patients 4 and 8 did not have documented leukopenias, whereas patient 9 did have leukopenia at the time of death. At 2 years, the estimate of OS and PFS were both 76.9% (95% CI, 44.2%–91.9%) as depicted in the Kaplan–Meier curves seen in Fig. 4.

In vitro viral kinase expression

Transfection of either BXLFI/vTK or BGLF4 conferred increased sensitivity of 293T cells to GCV and AZT as shown by a decrease in cellular proliferation at all time points tested. After treating 293T

Tissue specimens

CD20 expression using L26 anti CD20 monoclonal antibody (Dako) and secondary goat-anti-mouse HRP conjugated antibody per Ohio State University pathology protocols was documented on every patient to confirm B-cell lineage. EBV positivity was documented on every patient using EBER-IHS. Evaluation of BXLFI/vTK and BGLF4 was completed in seven patients and found to be positive. Areas of tumor expressing viral kinases did not express latent membrane protein 1 (LMP1; Fig. 2).

Table 3. Overall response rates and duration of response in 13 patients with PCNS-PTLD treated with GCV, AZT, rituximab, and dexamethasone

<table>
<thead>
<tr>
<th>ID</th>
<th>Transplant-PTLD</th>
<th>Lesion location history</th>
<th>Radiologic response</th>
<th>Time to response (mo.)</th>
<th>Response duration (mo.)</th>
<th>Survival (cause of death)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>156b</td>
<td>FR/O LyG III</td>
<td>CR</td>
<td>5</td>
<td>79</td>
<td>Alive</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>T/P LyG III</td>
<td>CR</td>
<td>3</td>
<td>71</td>
<td>Alive</td>
</tr>
<tr>
<td>3</td>
<td>156</td>
<td>FR DLBCL</td>
<td>CR</td>
<td>2</td>
<td>67.5</td>
<td>Alive</td>
</tr>
<tr>
<td>4</td>
<td>252b</td>
<td>FR DLBCL</td>
<td>CR</td>
<td>2</td>
<td>141</td>
<td>Deceased (sepsis)</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>FR DLBCL</td>
<td>CR</td>
<td>6</td>
<td>39</td>
<td>Deceased (pulmonary embolism)</td>
</tr>
<tr>
<td>6</td>
<td>72</td>
<td>Multifocal LyG III</td>
<td>PR</td>
<td>1</td>
<td>18.5</td>
<td>Deceased (pulmonary embolism)</td>
</tr>
<tr>
<td>7</td>
<td>170</td>
<td>P/pons DLBCL</td>
<td>CR</td>
<td>2</td>
<td>59</td>
<td>Alive</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>FR/P DLBCL</td>
<td>CR</td>
<td>1</td>
<td>9</td>
<td>Deceased (sepsis, DIC)</td>
</tr>
<tr>
<td>9</td>
<td>162</td>
<td>Multifocal LyG III</td>
<td>PD</td>
<td>NA</td>
<td>NA</td>
<td>Deceased (sepsis)</td>
</tr>
<tr>
<td>10</td>
<td>74</td>
<td>Multifocal LyG III</td>
<td>PR</td>
<td>1.5</td>
<td>26.5</td>
<td>Alive</td>
</tr>
<tr>
<td>11</td>
<td>132</td>
<td>Multifocal DLBCL</td>
<td>CR</td>
<td>2</td>
<td>26</td>
<td>Alive</td>
</tr>
<tr>
<td>12</td>
<td>169</td>
<td>T DLBCL</td>
<td>PR</td>
<td>4</td>
<td>18.5</td>
<td>Alive</td>
</tr>
<tr>
<td>13</td>
<td>125</td>
<td>Multifocal DLBCL</td>
<td>CR</td>
<td>2</td>
<td>20</td>
<td>Alive</td>
</tr>
</tbody>
</table>

Abbreviations: CR, complete remission; DLBCL, diffuse large B-cell lymphoma; FR, frontal lobe; LyG III, lymphomatoid granulomatosis grade III; NA, not applicable; O, occipital lobe; P, parietal lobe; PR, partial response; PD, progressive disease; T, temporal lobe.

bThe interval for patients 1 and 4 is the interval from the original transplant to PTLD diagnosis.
cells with AZT and GCV transfected with both BXLFI/vTK and BGLF4 vectors for 72 hours, there was greater than 60% reduction in cellular proliferation (Fig. 3A and B). Flow cytometry with annexin V/PI double staining was used to analyze whether transfection of lytic phase kinases led to increased apoptosis when exposed to GCV + AZT, rituximab, dexamethasone, or a combination of all 4 drugs. The rates of apoptosis were increased in cells exposed to a combination of all four drugs for 48 and 72 hours compared to any drug alone at any exposure duration (Fig. 3C). Akata cells were exposed to our four-drug regimen for distinct time periods which resulted in BZLF1 induction at all time periods tested (Fig. 3D) and BXLFI expression at 24 hours. The expression of BXLFI correlated with sensitization to combination GCV + AZT, rituximab, and dexamethasone treatment (Fig. 3C).

Discussion

PCNS-PTLD is a rare complication of SOT with no standard treatment. The most common therapeutic options after reduction in immune suppression therapy include cytotoxic chemotherapy with high-dose methotrexate (HD-MTX), with or without whole brain radiotherapy (WBRT; ref. 13). A 2013 multicenter retrospective review by Evens and colleagues analyzed first-line treatment after reduction of immune suppression in 84 patients with PCNS-PTLD over a 14-year period (12). HD-MTX was given to 48% of the cohort alone or in combination with other agents. High-dose cytarabine was administered to 33%, while rituximab was used alone (10%) or in combination with other agents in 45% of patients. CR was seen in 38% and PR in 21% of patients, while 32% of patients had PD. The median OS was 17 months. In another retrospective review by Cavaliere and colleagues (11) spanning 25 years, 34 patients with PCNS-PTLD received systemic therapy (temozolomide, HD-MTX alone or in combination with other systemic chemotherapy, or CHOP), intrathecal chemotherapy, immunotherapy (rituximab), and radiotherapy. The authors report a 47-month median survival with all treatment outcomes combined. This exceeded a previously reported median survival of 26 months by Snajdov and colleagues in patients with primary brain lymphomas after kidney transplant (36). Using an antiviral approach, we observed an ORR of 92% and estimated 2-year OS was 76.9%.

Our treatment regimen demonstrates a comparable OS to previously described chemotherapeutic and radiation-based therapies and may have a milder side-effect profile. Importantly, only one of 13 patients died with PD, with other patients in this study succumbing to sepsis and thrombotic events. Using an antiviral-based regimen we avoid toxicities attributed to standard induction or chemotherapeutic regimens such as HD-MTX. HD-MTX in combination with WBRT can cause delayed leuкоencephalopathy (37–39), which can be progressive and in extreme cases, fatal (38). In addition, HD-MTX is associated with renal injury directly related to methotrexate clearance by the kidney (40–42). Aoki and colleagues reported a 22% reduction in creatinine clearance with HD-MTX alone in PCNSL (42). These nephrogenic changes pose an increased risk in a patient population where renal health and performance status are often compromised. The risk of nephrotoxicity is much lower with AZT/GCV and was not a significant dose-limiting toxicity in our patients. AZT and GCV do come with their own toxicities and are known to be myelo-suppressive. However, the incidence of hematologic toxicities in our study was expected and these toxicities were typically reversible. Nonhematologic side effects were not observed during our study.

In a review by Cavaliere and colleagues (11), eight patients received undisclosed antiviral therapy concomitantly with chemotherapy and/or radiation. Antiviral therapy efficacy could not be determined at that time given the confounding treatment modalities. This review highlights the limitations of antiviral therapy, recognizing that antivirals like GCV require phosphorylation by lytic phase kinases and have no effect on tumor cells in latently infected B cells. There is ongoing research focused on inducing lytic phase kinases with therapies like histone deacetylase inhibitors (HDACi), steroids, radiotherapy, and other chemotherapeutic agents (22, 43–45). Other studies have demonstrated that a single fraction of WBRT can induce EBV lytic kinases in implanted PCNS lymphomas in rats. Subsequent treatment with AZT and GCV improved survival time compared with either therapy alone (22). Arginine butyrate, an HDACi, was used in conjunction with GCV in 15 patients with refractory EBV lymphoid malignancies resulting in four CRs and six PRs (44). In a study looking at EBV+ PCNSL, Roychowdhury and colleagues (22) demonstrated that EBV thymidine kinase expression by in situ RT-PCR in one patient eliminated the need for induction therapies. They further report that this 45-year-old man with PCNS-PTLD and kinase expression in tumor tissue was successfully treated with GCV and AZT without WBRT. At the time of the paper submission, the patient remained on GCV and AZT and had been disease free for 36 months. Our study expands upon this finding by reporting the expression of lytic protein (BGLF4) and thymidine (BXLFI/vTK) kinases in PCNS-PTLD without induction therapies. Identification of predictive and/or prognostic biomarkers is critical to select patients for targeted treatment. Expression of these kinases provides the rationale for using AZT and GCV as primary treatment in these tumors. Constitutive lytic phase kinase activity in PCNS-PTLD suggests that we may be able to replace intensive induction or chemotherapeutic regimens in future trials with antiviral therapy. At the University of Miami, Ramos and colleagues reported dramatic responses in patients with AIDS-related PCNSL treated with AZT-based treatment (21). Furthermore, AZT induced EBV lytic gene expression (BZLF1 and BXLFI/vTK) followed by apoptosis in primary EBV+ lymphoma cell lines derived from AIDS patients (21). Likewise, we show the lytic phase protein BZLF1 and BXLFI kinase was induced in EBV+ Akata cells using our combination steroid, rituximab, and antiviral regimen. Prior work has demonstrated that treatment of EBV+ cell lines with glucocorticoid or nucleoside analogues is capable of triggering activation of BZLF1 and downstream kinases (21, 31, 46). Here, we were able to demonstrate in two separate cell line models that combination treatment with nucleoside analogues, rituximab and dexamethasone, led to maximal anti-tumor effect and lytic gene expression. This may also provide explanation of the attractive clinical activity seen in patients treated with combination therapy despite only portions of the PCNS PTLD tumors showing expression of BGLF4 and BXLFI. We would expect BGLF4 to be induced; however, we were unable to demonstrate this due to lack of an appropriate antibody. Despite this shortcoming, showing induction of lytic phase genes like BZLF1 is evidence of the effectiveness of our drug regimen despite lack of a specific induction regimen.

Primary treatment in our study included steroids and rituximab, in addition to antivirals. The question remains which adjuncts to antiviral therapy, if any, are necessary for effective
treatment of PCNS-PTLD. In the aforementioned case report by Roychowdhury and colleagues, steroids but not rituximab, were used (22). The use of rituximab in PCNS-PTLD is controversial given poor CNS penetration across the blood–brain barrier (27). However, case reports have shown complete remission of PCNS-PTLD with rituximab monotherapy (27). Prospective, randomized controlled trials designed to evaluate the effect of rituximab on PCNS-PTLD with and without antiviral therapy are needed to delineate the role of combined versus single-agent therapy.

Special consideration should be given to the patients that were successfully retransplanted after treatment of PCNS-PTLD with this regimen. The role of retransplantation after treatment of PTLD has been controversial due to the reintroduction of increased immunosuppression. In an analysis by Johnson and colleagues (47), 69 retransplants were performed after the treatment for PTLD. Conclusions from their study showed patient and graft survival were 85.5% and 73.9%, respectively. Here, we include two patients, 1 and 4 from Table 1, who received a second kidney transplant after successful treatment of PCNS-PTLD. Patient 1 was still alive 4 years after transplantation and patient 4 survived another 5 years after the second transplant before dying from complications of colon cancer. Taking these cases into consideration, a prohibitive stance on retransplantation should not be the rule. Several features may predispose a patient to better outcomes following retransplantation including type of organ transplanted, time from PTLD diagnosis to retransplantation, EBV seronegativity, and type of immunosuppressive medication used (47). Further study is needed to determine which patients will benefit most from retransplantation after treatment of PCNS-PTLD.

Limitations to our study include the small sample size, variability in tumor subtype, and treatment modifications due to myelosuppression. We saw approximately 20 patients with PCNS PTLD over the time period of this report. Patients with poor performance status (i.e., ECOG 3–4), unable to consent to treatment, inability to tolerate any drug in this regimen, CNS/systemic infection, or cytopenias on presentations were excluded. While interpretation of our results is limited by the small sample size, the excellent responses observed are notable. Additionally, we illustrate proof of concept by demonstrating the expression of viral kinases in tumor tissue and increased antiviral therapy as first-line treatment for PCNS-PTLD. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.P. Dugan, B.M. Haverkos, M. Lustberg, J. Patton, Y. Huang, G. Nuovo, G. Lozanski, P. Porcu, M.A. Caligiuri, R.A. Baiocchi

Disclosure of Potential Conflicts of Interest

B.M. Haverkos is a consultant/advisory board member for Viratac Therapeutics. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: B.M. Haverkos, L.K. Martin, M. Lustberg, J. Fingeroth, P. Porcu, M.A. Caligiuri, R.A. Baiocchi

Development of methodology: B.M. Haverkos, M. Lustberg, F. Yan, R.F. Ambinder, P. Porcu, M.A. Caligiuri, R.A. Baiocchi

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.P. Dugan, B.M. Haverkos, L.K. Martin, M. Lustberg, J. Patton, M. Martin, G. Nuovo, F. Yan, R. Cavaliere, G. Lozanski, P. Porcu, M.A. Caligiuri, R.A. Baiocchi

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.P. Dugan, B.M. Haverkos, M. Lustberg, J. Patton, Y. Huang, G. Nuovo, G. Lozanski, P. Porcu, R.A. Baiocchi

Writing, review, and/or revision of the manuscript: J.P. Dugan, B.M. Haverkos, R.A. Baiocchi

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.P. Dugan, B.M. Haverkos, L. Villagomez, J. Fingeroth, R.A. Baiocchi

Study supervision: B.M. Haverkos, R.A. Baiocchi

Other (providing essential reagents for studies): S.C. Kenney

Acknowledgments

This work was supported by the Friends of Jason Gould Foundation (R.A. Baiocchi). B.M. Haverkos was supported by the NCI of the NIH under Award Number T32CA165998.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 2, 2017; revised January 31, 2018; accepted April 2, 2018; published first April 9, 2018.

References

Durable Responses with Antiviral Therapy in PCNS-PTLD

Complete and Durable Responses in Primary Central Nervous System Posttransplant Lymphoproliferative Disorder with Zidovudine, Ganciclovir, Rituximab, and Dexamethasone

Clin Cancer Res 2018;24:3273-3281. Published OnlineFirst April 9, 2018.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-17-2685

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2018/04/07/1078-0432.CCR-17-2685.DC1

Cited articles
This article cites 44 articles, 15 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/24/14/3273.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/24/14/3273.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.