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Abstract

Purpose: To develop a radiomics signature based on pre-
operative MRI to estimate disease-free survival (DFS) in
patients with invasive breast cancer and to establish a radio-
mics nomogram that incorporates the radiomics signature and
MRI and clinicopathological findings.

Experimental Design: We identified 294 patients with
invasive breast cancer who underwent preoperative MRI.
Patients were randomly divided into training (n ¼ 194) and
validation (n ¼ 100) sets. A radiomics signature (Rad-score)
was generated using an elastic net in the training set, and the
cutoff point of the radiomics signature to divide the patients
into high- and low-risk groups was determined using receiver-
operating characteristic curve analysis. Univariate and multi-
variate Cox proportional hazards model and Kaplan–Meier
analysis were used to determine the association of the radio-
mics signature, MRI findings, and clinicopathological vari-

ables with DFS. A radiomics nomogram combining the Rad-
score and MRI and clinicopathological findings was con-
structed to validate the radiomic signatures for individualized
DFS estimation.

Results: Higher Rad-scores were significantly associated
with worse DFS in both the training and validation sets
(P¼ 0.002 and 0.036, respectively). The radiomics nomogram
estimated DFS [C-index, 0.76; 95% confidence interval (CI);
0.74–0.77] better than the clinicopathological (C-index, 0.72;
95% CI, 0.70–0.74) or Rad-score–only nomograms (C-index,
0.67; 95% CI, 0.65–0.69).

Conclusions: The radiomics signature is an independent
biomarker for the estimation of DFS in patients with invasive
breast cancer. Combining the radiomics nomogram improved
individualized DFS estimation. Clin Cancer Res; 24(19); 4705–14.
�2018 AACR.

Introduction
As breast cancers are spatially and temporally heterogeneous,

typical invasive biopsy methods do not accurately provide a
complete characterization of the entire tumor. Imaging has great
potential in guiding therapy because it can provide a more
comprehensive view of the entire tumor and can be used repeat-
edly during treatment to monitor disease and/or the response to
therapy.

Radiomics is an emerging methodology that automatically
extracts high dimensional features from imaging data, which can
later be mined and analyzed for decision support (1–4). Recent
advances in radiomics have provided insights in personalized
medicine in oncologic practice related to tumor detection, sub-
type classification, and assessment of treatment response (3, 5–9).
A set of relevant biomarkers, commonly referred to as signature
information, has been defined; it has been shown to have prom-
ising results, and it may be powerful enough to change clinical
management (10–13).

Many studies involving survival analysis of patients with
tumors of various organs have reported that several texture
features, such as uniformity and entropy, can be used in risk
stratification using a limited number of texture features (1, 7, 9,
14–18). Because prognosis is not determined by a single risk
factor, these previously described approaches have a limited value
because they use only few selected features. Therefore, multi-
feature signatures are deemed reasonable, and huge numbers of
markers are usually studied in a high-throughputmanner (10, 12,
13, 19, 20). Although it is now recognized that a signature
composed of multiple biomarkers holds higher value than a
single biomarker (10), to the best of our knowledge, a radiomics
signature associated with recurrence in patients with invasive
breast cancer has not yet been reported. If radiomics features
from preoperative staging MRI can be used to predict patient
outcomes, they can be particularly beneficial because MRI is
noninvasive and lacks additional cost.

Therefore, the aim of this study was to develop a radiomics
signature based on preoperative MRI to estimate the disease-free
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survival (DFS) in patients with invasive breast cancer and to
further establish a radiomics nomogram that incorporates the
radiomics signature, MRI findings, and clinicopathological find-
ings for the individual preoperative prediction of recurrence.

Materials and Methods
Patients

Institutional review board approval was obtained for this study
(SMC 2017-08-136) and the need for informed patient consent
was waived owing to its retrospective nature. This study was
conducted in accordance with the Declaration of Helsinki.

Eight-hundred twenty-three consecutive women (mean age, 50
years) who underwent surgery for invasive breast cancer between
March 2011 and December 2011 were identified. The inclusion
criteria of our study were as follows: (i) preoperative dynamic
contrast-enhancedMRI using a 1.5-T scanner at our institution; (ii)
initial unilateral breast malignancy with a final pathologic diag-
nosisof invasivebreast cancer; and(iii) a lesionpresentingasamass
onMRI. The exclusion criteriawere as follows: (i)MRI performed in
patients after the diagnosis of cancer by vacuum-assisted or exci-
sional biopsy; (ii) patients treatedwith neoadjuvant chemotherapy
(NAC); (iii) patients presenting with metastatic disease and/or a
concurrent malignancy; (iv) patients with positive margins of
resection. Finally, 294 cancers in 294 women (mean age, 51 years;
range, 24–85 years) were included in this study.

MRI protocol
All patients underwent dynamic contrast-enhanced (DCE)

MRI. Details regarding the acquisition parameters and MRI
retrieval procedure are presented in Appendix E1 (online).

MRI preparation for radiomics analysis
T2-weighted, pre-enhanced T1-weighted, contrast-enhanced

T1-weighted, and contrast-enhanced T1-weighted subtractionMR
imageswere retrieved from the Picture Archiving Communication
System and loaded onto aworkstation for further texture analysis.
Subtraction images from contrast-enhanced images at 90 s to pre-
enhanced images and contrast-enhanced T1-weighted images at
90 s after contrast injection were assessed. Details regarding the

MRI preparation for radiomics analysis are presented in Appendix
E2 (online). To calculate the interobserver agreement of feature
extraction, we randomly selected 49 patients using statistical
software and again placed the regions-of-interest (ROI) on con-
trast-enhanced T1-weighted subtraction images; this, was per-
formed by a different radiologist with 6 years of experience in
breastMRI (J.S.C). The interclass correlation coefficient (ICC)was
calculated and an ICC of greater than 0.75 was considered to
represent good agreement.

Conventional MRI and clinicopathological evaluations
The MR images of the masses were retrospectively evaluated

according to the American College of Radiology Breast Imaging
Reporting and Data System (BI-RADS) MR lexicon (21) by two
board-certified radiologists (J.S.C. and E.S.K., with 6 and 10 years
of experience in breast MRI, respectively) in consensus. Kinetic
features on computer-aided diagnosis (CAD) were also recorded.
The CAD reports included the following kinetic features used in
our analysis: the initial peak enhancement values; proportions of
early-phase medium and rapid enhancements; and proportion of
delayed-phase persistent, plateau, and washout enhancements.
Details regarding the interpretation of MRI are presented in
Appendix E3 (online).

The final histopathological results of surgical specimens were
reviewed to determine the following: tumor size; histological
grade; presence of extensive intraductal component (EIC); pres-
ence of lymphovascular invasion; estrogen receptor (ER), proges-
terone receptor (PR), human epidermal growth factor receptor 2
(HER2); and Ki-67 expression status. Tumors withHER2 scores of
3þ (strong homogeneous staining) were considered positive. In
the case of 2þ scores (moderate complete membranous staining
in �1% of tumor cells), silver in situ hybridization (SISH) was
used to determine HER2 amplification. Breast cancers were divid-
ed into three molecular subtypes based on the immunohisto-
chemical or SISH findings for ER, PR, and HER2 as follows:
luminal (hormone receptor–positive and any HER2 status),
HER2-enriched (hormone receptor-negative andHER2-positive),
and triple-negative (hormonal receptor–negative and HER2-
negative) (22). For convenience, pathologic diagnoses were
divided into three groups: invasive ductal carcinoma, invasive
lobular carcinoma, and others.

The end point of our study was DFS, which was defined as the
time from the date of surgery to that of the first recurrence of the
disease, date of death, date last known to have no evidence of
disease, or date of the most recent follow-up. Disease recurrence
was defined as the outcome of breast cancer recurrence (local-
regional or distant) or new primary contralateral breast cancer
(invasive or ductal carcinoma in situ). Information regarding the
patient follow-up and recurrence statuswasobtained frompatient
medical records or from clinicians involved in the treatment and
follow-up. Data concerning patients who did not have recurrence
at the last follow-up or whowere lost to follow-up were treated as
censored in the analysis.

Statistical analysis
A two-tailed P value of <0.05 was considered as statistically

significant. All statistical analyses were performed by a dedicated
statistician usingR statistical software (version3.2.4; R Foundation
for Statistical Computing, Vienna, Austria). We used the "glmnet"
package to perform the elastic net Cox regression model analysis.
Kaplan-Meier curve, nomogram construction and calibration plot

Translational Relevance

Because of the tumor heterogeneity, typical invasive biopsy
methods do not accurately provide a complete characteriza-
tion of the entire tumor. Radiomics is an emerging method-
ology that automatically extracts high-dimensional features
from imaging data, which facilitates the use of these imaging
features to quantify differences between tissues that are imper-
ceptible to human eyes. In this study, the identified radiomics
signature can be used as a biomarker for risk stratification for
disease-free survival (DFS) in patients with invasive breast
cancer. In addition, a radiomics nomogram that incorporates
the radiomics signature,MRIfindings, and clinicopathological
findings, can be used to facilitate the preoperative individu-
alized prediction of recurrence in patients with breast cancer.
Such quantitative radiomics prognostic models of breast can-
cer may potentially be useful in precision medicine, and they
can affect patients' treatment strategies.

Park et al.

Clin Cancer Res; 24(19) October 1, 2018 Clinical Cancer Research4706

on June 19, 2021. © 2018 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst June 18, 2018; DOI: 10.1158/1078-0432.CCR-17-3783 

http://clincancerres.aacrjournals.org/


were analyzed using the "rms" and "hdnom" packages. Note that
some R functions were modified to apply to the data.

Radiomics analysis, Rad-score building, and validation of
Rad-score

Radiomics features were computed volumetrically over the
radiologist-drawn ROIs from each of the four distinct MRI series.
The features were computed using a combination of open source
code (23) and in-house generated computer code implemented in
MATLAB (Mathworks Inc.). Details of computer code used to
compute the radiomics features are described and provided in
Appendix E4. A total of 156 texture features in three distinct
categories were computed. The features were grouped into mor-
phological (eight features), histogram-based (19 features), and
higher-order texture features (18 features). In Appendix E5 and
Appendix Table S1, the categorical concepts of radiomics features
(Appendix E5) and the mathematical definition of the adopted
feature algorithms (Appendix Table 1) are described (online).
Tumor volume was also assessed based on the ROIs drawn by the
study radiologist.

We randomly divided patients into two groups, a training set
(n ¼ 194) and validation set (n ¼ 100) using statistical software.
Patients' characteristics in the training set and validation set were
compared using an analysis of variance (ANOVA) for continuous
variables and a chi-squared test or Fisher's exact test for categorical
variables. The elastic net method, which is known to be ideal for
the regression of high-dimensional data and also useful in var-
iable selection for highly correlated variables (24), was used to
select the most useful predictive radiomics features from the
training set. A radiomics signature (Rad-score) was calculated for
each patient via a linear combination of selected features that
were weighted by their respective coefficients. ICC value of the
Rad-score that was determined by two radiologists was calculated.

The potential association of the radiomics signature with DFS
was first assessed in the training set and then validated in the
validation set. The patients were classified into high-risk or low-
risk groups according to the Rad-score, the threshold ofwhichwas
identified using receiver-operating characteristic (ROC) curve
analysis. We employed the Youden's J statistics (25), which uses
themaximumvalue (sensitivitiesþ specificities) as the optimality
criterion. Kaplan-Meier curves were used to analyze survival
between the high- and low-risk groups. Log-rank tests were used
to compare differences in the survival between the two groups. In
the training set, the univariate Cox proportional hazards model
was used to analyze the effects of clinicopathological variables
(age, adjuvant chemotherapy, adjuvant radiation therapy, adju-
vant endocrine therapy, histological grade, T stage, N stage, EIC,
lymphovascular invasion, molecular subtype, and Ki-67 status),
morphologic and quantitative volumetric factors obtained via

Table 1. Characteristics of patients in the training set and validation set

Characteristics
Training set
(n ¼ 194)

Validation set
(n ¼ 100) P

Age, ya 50.64 � 10.46 52.34 � 10.51 0.190
Tumor size (mm)a 21.19 � 11.77 19.98 � 12.05 0.408
Rad-scorea 0.00 � 0.06 0.00 � 0.07 0.696
Early: Peak enhancement (%)a 256.09 � 109.87 259.65 � 92.28 0.782
Early: Medium (%)a 8.07 � 17.72 6.47 � 15.93 0.448
Early: Rapid (%)a 91.96 � 17.73 93.56 � 15.95 0.450
Delayed: Persistent (%)a 21.00 � 22.76 19.67 � 24.47 0.646
Delayed: Plateau (%)a 42.22 � 18.32 38.05 � 17.60 0.062
Delayed: Washout (%)a 36.78 � 26.88 42.28 � 26.91 0.097
T stage 0.064
1 111 (57.22%) 70 (70%)
2 77 (39.69%) 26 (26%)
3 5 (2.58%) 4 (4%)
4 1 (0.52%) 0 (0%)

N stage 0.516
0 126 (64.95%) 58 (58%)
1 50 (25.77%) 34 (34%)
2 12 (6.19%) 6 (6%)
3 6 (3.09%) 2 (2%)

Stage 0.550
1 84 (43.30%) 50 (50%)
2 88 (45.36%) 40 (40%)
3 22 (11.34%) 10 (10%)

Pathologic type 0.038
IDC 171 (88.14%) 95 (95%)
ILC 11 (5.67%) 0 (0%)
Others 12 (6.19%) 5 (5%)

Mass shape 1.000
Round/oval 49 (25.26%) 25 (25%)
Irregular 145 (74.74%) 75 (75%)

Mass margin 0.682
Circumscribed 17 (8.76%) 11 (11%)
Not circumscribed 177 (97.24%) 89 (89%)

Internal enhancement 0.232
Homogeneous 18 (9.28%) 16 (16%)
Heterogeneous 148 (76.29%) 71 (71%)
Rim enhancement 28 (14.43%) 13 (13%)

Histologic grade 0.933
1 57 (29.38%) 28 (28%)
2 81 (41.75%) 44 (44%)
3 56 (28.89%) 28 (28%)

ER 0.673
Positive 138 (71.13%) 68 (68%)
Negative 56 (28.87%) 32 (32%)

PR 0.098
Positive 131 (67.53%) 57 (57%)
Negative 63 (32.47%) 43 (43%)

HER2 0.158
Positive 37 (19.07%) 27 (27%)
Negative 157 (80.93%) 73 (73%)

Molecular subtype 0.263
Luminal 140 (72.16%) 68 (68%)
HER2-enriched 17 (8.76%) 15 (15%)
Triple-negative 37 (19.07%) 17 (17%)

Ki-67 0.568
�14% 120 (61.86%) 66 (66%)
<14% 74 (38.14%) 34 (34%)

Lymphovascular invasion 0.965
Present 64 (32.99%) 34 (34%)
Absent 130 (67.01%) 66 (66%)

Extensive intraductal component 0.595
Present 38 (19.59%) 23 (23%)
Absent 156 (80.41%) 77 (77%)

Adjuvant chemotherapy 0.704
No 52 (26.80%) 24 (24%)
Yes 142 (73.20%) 76 (76%)

(Continued in the following column)

Table 1.Characteristics of patients in the training set and validation set (Cont'd )

Characteristics
Training set
(n ¼ 194)

Validation set
(n ¼ 100) P

Adjuvant radiotherapy 0.965
No 29 (14.95%) 14 (14%)
Yes 165 (85.05%) 86 (86%)

Adjuvant endocrine therapy 0.742
No 57 (29.38%) 32 (32%)
Yes 137 (70.62%) 68 (68%)

NOTE: Unless otherwise noted, data are numbers of patients, with percentages
in parentheses.
aData are means � standard deviations.
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MRI (mass shape, mass margin, internal enhancement pattern,
and percentage volume of each kinetic component found within
the tumor at early and delayed phases of enhancement), and Rad-
score on DFS. Variables significant in the univariate Cox propor-
tional hazard model (P < 0.05) were included in the multivariate
Cox proportional hazardmodel. To overcome themulticollinear-
ity, we then performed stepwise selection based on the Akaike
information criterion (AIC).

Development and validation of the radiomics nomogram
To demonstrate the value of the radiomics signature, the

radiomics nomogram, Rad-score-only nomogram, and clinico-
pathological nomogram were evaluated in the training set and
then validated in the validation set. The radiomics nomogram
incorporated the radiomics signature and independent various
risk factors based on multivariate Cox analysis with stepwise
selection. The performance of the radiomics nomogram was
compared with that of both the Rad-score-only and clinico-
pathological nomograms. The clinicopathological nomogram
did not include the Rad-score or variables associated with MRI.
An index of probability of concordance (C-index) between the
predicted probability and actual outcome was calculated to
evaluate the predictive ability and discrimination of the model
(26). The value of the C-index ranges from 0.5 to 1.0, with 0.5
indicating random chance and 1.0 indicating a perfectly accu-
rate discrimination. The nomograms were subjected to boot-
strapping validation (1,000 bootstrap resamples) to calculate a
relatively corrected C-index. To improve statistical robustness
of results, we divided patients and performed the same proce-
dures three additional times. The mean C-index of the radio-
mics nomogram and Rad-score-only nomogram in the addi-
tional divisions was calculated.

Results
Patient outcomes

Two-hundred thirty-nine (239/294, 81.3%) patients under-
went breast-conserving surgery and mastectomy was performed
in 55 (55/294, 18.7%) patients. Regarding survival outcomes,
there were 32 recurrences (13 local-regional, five contralateral
breast, and 14 distant recurrences) after a mean follow-up period
of 54.2 months (range, 5–64 months). The mean time to recur-
rence was 33.1 months (range, 5–60 months). There was one
patient with a recurrence within the first 6 months of follow-up,
and this patient might have been due to residual disease.

Patients' characteristics in the training set and validation set are
shown in Table 1. Except for the pathologic type, no differences
were found between the training and validation sets in Rad-score
or clinicopathological findings. The mean tumor volume calcu-
lated was 4,168.9mm3 (range, 72.7–7,2876.0). Other pathologic
diagnoses in the 17 patients were as follows:mucinous carcinoma
(7), medullary carcinoma (2), invasive micropapillary carcinoma
(3), tubular carcinoma (1), invasive apocrine carcinoma (3), and
adenoid cystic carcinoma (1).

The interobserver agreement of the radiomics features extrac-
tion between two readerswas extremely high. Themean ICC value
for the 156 radiomics features was 0.960 (range, 0.760–0.999).

Creation of the radiomics signature-based prediction model
The 156 texture features were divided into four groups [one

morphological group and three higher-order texture groups (gray

Table 2. Characteristics of patients according to the risk group based on
radiomics signature in the training set

Low-risk
(n ¼ 84)

High-risk
(n ¼ 109) P

Age, ya 50.43 � 8.88 50.68 � 11.53 0.869

Tumor size (mm)a 16.48 � 10.67 24.86 � 11.35 <0.001
Rad-scorea �0.05 � 0.04 0.05 � 0.03 <0.001
Early: Peak enhancement (%)a 221.67 � 80.97 282.39 � 122.09 <0.001
Early: Medium (%)a 10.23 � 21.14 6.49 � 14.53 0.147

Early: Rapid (%)a 89.82 � 21.14 93.54 � 14.55 0.15

Delayed: Persistent (%)a 23.60 � 25.50 19.17 � 20.35 0.181

Delayed: Plateau (%)a 44.10 � 21.08 40.69 � 15.88 0.202

Delayed: Washout (%)a 32.30 � 27.70 40.12 � 25.95 0.045

T stage <0.001
1 67 (79.76%) 43 (39.45%)

2 15 (17.86%) 62 (56.88%)

3 2 (2.38%) 3 (2.75%)

4 0 (0%) 1 (0.92%)

N stage 0.003

0 66 (78.57%) 59 (54.13%)

1 14 (16.67%) 36 (33.03%)

2 2 (2.38%) 10 (9.17%)

3 2 (2.38%) 4 (3.67%)

Stage <0.001
1 56 (66.67%) 27 (24.77%)

2 24 (28.57%) 64 (58.72%)

3 4 (4.76%) 18 (16.51%)

Pathologic type 0.009

IDC 68 (80.95%) 102 (93.58%)

ILC 6 (7.14%) 5 (4.59%)

Others 10 (11.90%) 2 (1.83%)

Mass shape 0.582

Round/oval 24 (28.57%) 24 (22.02%)

Irregular 60 (71.43%) 85 (77.98%)

Mass margin 0.123

Circumscribed 4 (4.76%) 13 (11.93%)

Not circumscribed 80 (95.24%) 96 (88.07%)

Internal enhancement 0.087

Homogeneous 9 (10.71%) 8 (7.34%)

Heterogeneous 68 (80.95%) 80 (73.39%)

Rim enhancement 7 (8.33%) 21 (19.27%)

Histologic grade 0.003

1 37 (44.05%) 19 (17.43%)

2 29 (34.52%) 52 (47.71%)

3 18 (21.43%) 38 (34.86%)

ER <0.001
Positive 66 (78.57%) 71 (65.14%)

Negative 18 (21.43%) 38 (34.86%)

PR 0.002

Positive 62 (73.81%) 68 (62.39%)

Negative 22 (26.19%) 41 (37.61%)

HER2 0.274

Positive 13 (15.48%) 24 (22.02%)

Negative 71 (84.52%) 85 (77.98%)

Ki-67 0.07

�14% 42 (50.00%) 78 (71.56%)

<14% 42 (50.00%) 31 (28.44%)

Lymphovascular invasion 0.041

Present 20 (23.81%) 44 (40.37%)

Absent 64 (76.19%) 65 (59.63%)

Extensive intraductal component 0.590

Present 15 (17.86%) 23 (21.10%)

Absent 69 (82.14%) 86 (78.90%)

NOTE: Unless otherwise noted, data are numbers of patients, with percentages
in parentheses.
aData aremeans� standarddeviations. Rad-score could not be calculated in one
patient who was excluded.
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level co-occurrence matrix, GLCM)] based on the potential pre-
dictors determined from the 194 patients in the training set and
from the features with nonzero coefficients in the elastic net Cox
proportional regression model. Because the variables had diverse
ranges of values, we standardized the texture values for the elastic
net regression. These features are described in the Rad-score
calculation formula in the Appendix E6 (online). The mean ICC
value of the Rad-score was 0.937 [95% confidence interval (CI),
0.891–0.964].

The median Rad-score was 0.0134 (range, �0.2179 to 0.0951;
interquartile range, �0.0342 to 0.0517). The optimum cutoff
value generated by the ROC curve was -0.003 (95% CI, 0.474–
0.864). Using this threshold value, patients were classified into a
high-risk group (Rad-score � �0.003) and a low-risk group
(Rad-score <�0.003). The characteristics of the patients according
to risk group are shown in Table 2. In the training set, larger tumor
size (P < 0.001), higher Rad-score (P < 0.001), higher peak
enhancement (P < 0.001), higher washout component (P ¼
0.045), higher T stage (P < 0.001), higher N stage (P ¼ 0.003),
pathologic diagnosis of IDC (P¼ 0.009), higher histological grade
(P ¼ 0.003), ER negativity (P < 0.001), PR negativity (P ¼ 0.002),
and presence of lymphovascular invasion (P ¼ 0.041) were asso-
ciated with the high-risk group. Kaplan–Meier curves showed that
the radiomics signaturewas associatedwith theDFS in the training
set (P¼0.002), and thisfindingwas confirmed in thevalidation set
(P ¼ 0.036; Fig. 1).

Results of the univariate analysis are shown in Table 3. A
higher Rad-score, larger tumor size, higher peak enhancement
on CAD, T2 stage, N3 stage, higher histological grade, ER
negativity, PR negativity, triple-negative subtype, and not receiv-
ing adjuvant endocrine therapy were associated with worse
DFS. In the multivariate analysis with stepwise selection, higher
Rad-score (DFS hazard ratio, 256300.000; 95% CI, 18.315–
3585000000; P ¼ 0.011), N3 stage (DFS hazard ratio, 5.269;
95% CI, 1.621–17.130; P ¼ 0.006) and triple-negative subtype
(DFS hazard ratio, 7.461; 95% CI, 2.922–19.050; P < 0.0001)
remained independent prognostic factors in the Cox propor-
tional hazards model (Table 4).

Performance and validation of the radiomics nomogram
A nomogram that incorporated the significant factors was

established (Fig. 2). The calibration curve of the radiomics nomo-
gram for estimating DFS outcome demonstrated good agreement
between prediction and observation in the validation set
(Fig. 3A). The C-index of the nomogram for the prediction of
poorer recurrence outcome was 0.76 (95% CI, 0.74–0.77).
The calibration curve of a clinicopathological nomogram that
included tumor size, N stage andmolecular subtype is also shown
(Fig. 3B). The C-index of the nomogram for the prediction of
poorer recurrence outcome was 0.72 (95% CI, 0.70–0.74).
Figure 3C shows the calibration curve of the Rad-score–only
nomogram, which had a C-index of 0.64 (95% CI, 0.63–0.69).
The mean C-index of the additional three divisions was 0.76
(95% CI, 0.75–0.78) in radiomics nomogram and 0.58 (95% CI,
0.56–0.60) in the Rad-score–only nomogram.

Discussion
Medical imaging is one of the major tools in oncologic diag-

nosis, treatment guidance, and treatment monitoring. Unlike
biopsy, imaging can be used noninvasively to assess the char-
acteristics of human tissue, which is why it is routinely used in
clinical practice. However, traditional imaging interpretation is
subjective or qualitative, which limits its clinical significance.
Recent advances in medical imaging acquisition and analysis,
including radiomics, allow high-throughput extraction of infor-
mative imaging features that can quantify the differences between
tissues that are imperceptible to human eyes.

Texture analysis has been used in breast MRI to detect micro-
calcifications (27), differentiate between benign and malignant
lesions (28, 29), and distinguish between breast cancer subtypes
(16, 18). In addition, this method has been used to predict
treatment response in patients treated with NAC (7). Concerning
the relationship between outcomes in patients treated with NAC
and texture features, Pickles and colleagues showed that higher
entropy onDCE-MR imageswas associatedwith poorer outcomes
in patients treated with NAC (8). In a preoperative setting, Kim

Figure 1.

Kaplan–Meier survival analyses
according to the radiomics signature
for patients in the training set (A) and
those in the validation set (B). A
significant association of the radiomic
signature with the DFS was shown in
the training set, which was then
confirmed in the validation set.
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and colleagues evaluated the relationship between MRI texture
features and survival outcomes in 203 patients with primary
breast cancer (9). Almost all of these prior studies have typically
used few radiomics features. This methodology seems anecdotal
and intuitive and might lead to an underestimation of the
significance of radiomics. Similar problems have occurred in the
field of radiogenomics, and construction ofmultifactor panels is a
more common approach to overcome this challenge in outcome
estimation (30, 31).

In this background, results of several studies attempting to
build models by using numerous radiomics features to predict
the molecular subtype have been recently published (16, 32).
Waugh and colleagues (16) used texture analysis from 220 imag-
ing features to find the surrogate markers of the molecular sub-
types in 148 cancers and 73 test sets. In a study by Grimm and
colleagues (32), 56 imaging features, including morphologic,
texture, and dynamic features, were evaluated as surrogate mar-
kers of the molecular subtypes in 275 breast cancers. This
approach has also been used to investigate the correlation
between the 21-gene recurrence score (Oncotype DX, Genomic
Health) or other kinds of multigene assays, such as those of
MammaPrint or PAM50, and breast MRI findings (33–36). For
example, in a study by Sutton and colleagues (35), 44 morpho-
logic and texture featureswere investigated in 95patientswhoalso
underwent 21-gene recurrence score testing and preoperative
breast MRI. On multivariate analysis, kurtosis on the first (P ¼
0.0056) and third (P ¼ 0.0005) post-contrast sequences was
significantly correlated with recurrence scores.

Taking a step forward, several researchers have developed
and validated a radiomics signature-based nomogram for the
preoperative prediction of lymph node metastasis in colorectal
cancer (12) or for the prediction of DFS in early-stage non–
small cell lung cancer (13). In this study, we developed and
validated a radiomics signature-based nomogram for the
preoperative individualized prediction of recurrence in patients
with breast cancer. The nomogram incorporates three compo-
nents of the radiomics signature based on 156 features
from four image series, MR kinetic features assessed using a
commercially available CAD system, and clinicopathological
findings. The nomogram can facilitate preoperative individu-
alized prediction of poor outcome with respect to DFS.

Table 3. Univariate analysis of DFS in the training set

Variable Hazard ratio (95% CI) P

Age 0.997 (0.957–1.039) 0.894
Tumor size 1.033 (1.004–1.064) 0.026
Early: Peak enhancement (%) 1.003 (1.000–1.006) 0.023
Early: Medium (%) 0.989 (0.958–1.020) 0.468
Early: Rapid (%) 1.011 (0.981–1.043) 0.471
Delayed: Persistent (%) 0.992 (0.970–1.013) 0.443
Delayed: Plateau (%) 0.997 (0.974–1.019) 0.767
Delayed: Washout (%) 1.007 (0.991–1.022) 0.401
T stage
1 Ref
2 2.434 (1.008–5.876) 0.048
3 3.141 (0.393–25.139) 0.281
4 0 (0–¥) 0.998

N stage
0 Ref
1 1.370 (0.506–3.706) 0.536
2 0.911 (0.117–7.071) 0.929
3 9.519 (3.009–30.114) <0.001

Stage
1 Ref
2 2.352 (0.829–6.678) 0.108
3 4.022 (1.162–13.922) 0.028

Pathologic type
IDC Ref
ILC 0.784 (0.105–5.846) 0.813
Others 0.648 (0.087–4.836) 0.672

Mass shape
Round/oval Ref
Irregular 1.756 (0.591–5.216) 0.311

Mass margin
Circumscribed Ref
Not circumscribed 1.021 (0.238–4.370) 0.978

Internal enhancement
Homogeneous Ref
Heterogeneous 1.049 (0.241–4.564) 0.949
Rim enhancement 1.639 (0.299–8.971) 0.569

Histologic grade
1 Ref
2 2.487 (0.517–11.975) 0.256
3 7.819 (1.763–34.675) 0.007

ER
Positive Ref
Negative 5.182 (2.171–12.368) 0.0002

PR
Positive Ref
Negative 4.086 (1.713–9.745) 0.002

HER2
Positive Ref
Negative 2.427 (0.567–10.383) 0.232

Molecular subtype
Luminal Ref
HER2-enriched 1.006 (0.123–7.945) 0.995
Triple-negative 6.213 (2.612–14.776) <0.0001

Ki-67
�14% Ref
<14% 0.329 (0.111–0.973) 0.044

Lymphovascular invasion
Present Ref
Absent 0.384 (0.166–0.890) 0.026

Extensive intraductal component
Present Ref
Absent 1.133 (0.383–3.349) 0.821

Adjuvant chemotherapy
Yes Ref
No 3.884 (0.907–16.621) 0.067

Adjuvant radiotherapy
Yes Ref
No 1.441 (0.487–4.255) 0.509

(Continued in the following column)

Table 3. Univariate analysis of DFS in the training set (Cont'd )

Variable Hazard ratio (95% CI) P

Adjuvant endocrine therapy
Yes Ref
No 4.167 (1.776–9.804) 0.001

Rad-score 35656.46 (6.182–205645034) 0.018

Table 4. Multivariate analysis of DFS in the training set

Variable Hazard ratio (95% CI) P

Rad-score 256300.000 (18.315–3585000000) 0.011
N stage
0 Ref
1 1.635 (0.575–4.652) 0.357
2 0.348 (0.043–2.827) 0.323
3 5.269 (1.621–17.130) 0.006

Molecular subtype
Luminal Ref
HER2-enriched 0.844 (0.104–6.837) 0.873
Triple-negative 7.461 (2.922–19.050) <0.0001
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Interestingly, in our study, a total of four radiomics features
were selected (i.e., surface to volume ratio [SVR], cluster tendency
of gray level co-occurrence matrix [GLCM] from T2, variance of
GLCM from T2, and sum variance of GLCM from T2); the well-
known radiomics feature, entropy, was not included. Many prior
studies have particularly emphasized the significance of entropy
(7, 9, 6–18, 29). We suspect that entropy was not selected in the
elastic net regression due to multicollinearity because we used
numerous texture features that could interact with each other.
Briefly, SVR was selected from the shape features. The SVR quan-
tifies the degree of irregularity of the tumor boundary. Irregular
tumor boundary could be associated with poor survival. Three
GLCM-related features were selected, which all of them reflect
textural heterogeneity within the tumor. Cluster tendency of
GLCM measures the homogeneity of the textural patterns. The
sum variance of GLCM measures the dispersion of the textural
information using the sum of grayscale values. The variance of
GLCM is proportional to the rate of occurrence of different
textural patterns within the tumor. These GLCM features have
different mathematical definitions and thus they measure differ-
ent aspects of tumor textural heterogeneity. Unlike histogram-
based features, which are dependent on a single pixel value,
texture features, which are based on GLCM/gray level size zone
matrix (GLSZM), take into account the interaction between
neighboring pixels and are thus, they are well suited to quantify
tumor texture and heterogeneity. This is consistent with previous

observations that texture features based on GLCM/GLSZMs
are better at capturing heterogeneous texture information than
histogram-based features (37). In addition, three of the four
features selected were calculated from T2-weighted images. This
is in accordance with prior speculation that T2-weighted images
depict better tumor heterogeneity than contrast-enhanced
T1-weighted images do (7).

Our study has three strengths. First, this is the first study
(to our knowledge) performed to estimate survival in patients
with invasive breast cancer using a radiomics signature. Our
study demonstrated that the radiomics signature can be used
to predict survival outcomes and a combined radiomics–
clinicopathological nomogram achieved superior prognostic
performance than either the Rad-score-only or the clinico-
pathological nomograms, with a higher C-index and better
calibration. Second, our radiomics signature was calculated
using ROIs drawn on entire tumors. Most previous studies
(12, 13, 33, 35) only used the single largest slice, which does
not reflect the true tumor heterogeneity. In addition, the single-
slice methodology may raise concerns of selection bias. Third,
we used standardized texture values for the elastic net regres-
sion because all texture features had diverse ranges. We believe
this procedure increased the accuracy of interpretation of the
texture features.

Our study has several limitations. First, this study had a relatively
small sample size and a relatively short follow-up period. Second,

Figure 2.

The developed radiomics nomogram.
The radiomics nomogram was
developed using the training set using
the radiomics score. The Rad-score
was determined by drawing a vertical
line to the points' axis to determine
how many points toward the
probability of DFS the patient
receives. Theprocesswas repeated for
each variable, and the points for each
of the risk factors were added. The
final total was then located on the
Total Point axis.
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our results might be hard to generalize because it was performed
using a single machine in a single institution with same MRI
protocol on mass lesions only. Further studies involving subjects
withvarious conditions ina larger populationareneeded.Third,we
did not conduct external validation to prove the robustness of our
results using an independent dataset. To overcome this limitation,
we performed 3 additional divisions, and the results were equally
good. External validation is left as a future study. Fourth,wedid not

include other possible risk factors, such as family history or genetic
abnormalities. Fifth, placement of the ROI on thewhole tumor and
calculation of radiomics parameters were not automatically per-
formed, making these time-consuming and labor-intensive tasks.
This may weaken the clinical application and significance of our
study. However, we believe our study, whichwas primarily a proof-
of-concept study, showed the potential of using radiomics in daily
practice. In the near future, we hope that commercially available

Figure 3.

Calibration curves of three nomograms in the validation set. A, Calibration curve of the radiomics nomogram. B, Calibration curve of the clinicopathological
nomogram.C,Calibration curveof theRad-score–only nomogram. Thedashed line represents aperfectmatchbetween the nomogram-predictedprobability (x-axis)
and the actual probability calculated using the Kaplan–Meier analysis (y-axis).
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software that performs automatic segmentation of the tumor and
calculation of radiomics parameters will be developed.

In conclusion, our results showed the identified radiomics
signature has the potential to be used as a biomarker for risk
stratification for DFS in patients with invasive breast cancer. In
addition, our study showed that a radiomics nomogram that
incorporates the radiomics signature, MRI findings, and clinico-
pathological findings, can be used to facilitate the preoperative
individualized prediction of recurrence in patients with breast
cancer. Such quantitative radiomics prognostic models of breast
cancer may potentially be useful for precision medicine and they
affect patients' treatment strategies.
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