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Figure 4.

MV-BITE efficacy against patient-derived colorectal carcinoma xenografts. A, Low-passage 3D cultures from human primary colorectal cancers (TSCs) were
inoculated with MV-eGFP-BIiTE (hCD3xCEA) at MOI 1. Images were acquired 24 hours post infection. Scale bars: 200 um. B, BiTE-mediated T-cell cytotoxicity against
TSCs. TSCs were co-cultured with human PBMCs (E:T 50:1) and vpBIiTE at indicated concentrations. LDH release was measured after 24 hours and specific tumor cell
lysis was calculated. C, BiTE-induced cytokine secretion. TSCs were co-cultured with human PBMCs and vpBITEs for 24 hours. Cytokine concentrations in culture
supernatants were quantified using a cytometric bead array. B and C, Statistical analysis was performed by two-way ANOVA and P values were adjusted for multiple
comparisons by Sidak test. Mean values of triplicates and SD are shown. D, Efficacy of MV-BIiTE against TSCs in vivo. NSG mice harboring subcutaneous TSC
xenografts were treated with MV-BIiTE (hCD3xCEA) on four consecutive days and PBMCs on the first day of treatment. Mice receiving either carrier fluid (mock),
PBMCs only or MV-BITE only served as controls (n = 9-10 mice per group). Survival was assessed by Kaplan-Meier analysis with long-rank (Mantel-Cox) test, and P
values were corrected for multiple comparisons by Bonferroni's correction. P values for comparison of MV-BIiTE + PBMCs to MV-BITE only are shown. ns, not

significant.

viral vector (MV-BiTE). With the approval of T-VEC (Imlygic) by
the FDA and EMA in 2015 (25), Pexa-Vec in phase III
(NCT02562755), and promising results in phase I/II trials of MV
(26, 27) as well as many other OVs (28), oncolytic virotherapy is
gradually entering clinical practice. Many of these OV vectors
encode additional therapeutic genes, including immunomodu-
lators such as GM-CSF (28) or CD40L/4-1BB (LOAd703;
NCT03225989; ref. 29).

Insertion of BiTE cassettes into MV does not compromise
replicative or oncolytic capacities. MV-encoded BiTEs are func-
tional in terms of antigen binding, target-specific T-cell activation
and induction of T-cell cytotoxicity. Thus, MV-BiTEs furtheradd to
the repertoire of immunomodulatory MV vectors (19-21). While
recruitment of T cells was achieved by targeting CEA, and CD20
served as model target tumor antigens in this study. Within the MV
vector platform, the scFvs are readily exchangeable by a targeting
domain of choice. Thus, MV-BiTEs can be directed against any
tumor surface antigen, provided that an appropriate binding
moiety is available. This enables application to additional tumor
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entities and concomitant targeting of several tumor antigens to
prevent potential antigen escape. Moreover, the anti-CD3 scFv
could be replaced, for example, by an NK-cell-specific scFv to
generate MV-"BiKEs" (bispecific killer cell engagers; ref. 30).

Therapeutic efficacy of MV-BiTE was assessed in complemen-
tary mouse models. While syngeneic models are necessary to
study effects in the context of an autochthonous immune system,
mice are not susceptible to MV infection and murine tumors show
limited permissiveness for the primate-adapted virus MV (31).
Although they do not account for natural immune responses,
humanized models more adequately reflect the extent of onco-
lysis. Therefore, we chose both established syngeneic models of
MV oncolysis and patient-derived xenografts of early-passage
patient-derived spheroid cells with transfer of unstimulated
PBMC:s to test efficacy of MV-BiTE.

In the syngeneic B16-CD20-CD46 model, treatment with
MV-BIiTE augmented the number of tumor-infiltrating T cells as
well as their activation status and conferred protective anti-tumor
immunity. Furthermore, mRNA levels of the transcription factor
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T-bet were significantly increased, indicating T-cell polarization
towards a Ty 1 phenotype. Increased infiltration and activation of
T cells was not only associated with upregulation of T-cell acti-
vation, differentiation, and proliferation markers, but also with
upregulation of T-cell exhaustion markers and inhibitory mole-
cules. This provides a rationale for combination with immune
checkpoint inhibition. Recently, a case report on combining
blinatumomab with anti-PD-1, as well as promising data from
a phase Ib trial combining T-VEC with anti-PD-1 have been
published (32, 33).

In the B16-CD20-CD46 model, therapeutic effects did not
depend on viral replication, but could not be achieved by local
injection of BiTEs only. Thus, the immunostimulatory properties
of the MV vector appear essential for efficacy. Furthermore, in this
model, viral replication and thus virus-mediated BiTE expression
were limited, as shown by analysis of intratumoral MV-N mRNA
and BiTE mRNA levels. Therefore, in a more permissive tumor,
stronger viral replication may add to a favorable treatment out-
come. Most patients have been vaccinated against measles and
thus have MV-neutralizing antibodies. Importantly, in the
B16-CD20-CD46 model, therapeutic efficacy of MV-BiTE was not
compromised in MV-immune mice. Of note, mice were treated
with intratumoral injections of MV-BiTE, probably limiting acces-
sibility of MV-BIiTE for neutralizing antibodies. Noteworthy,
intraperitoneal administration of oncolytic MV has been success-
fully applied in measles-immune ovarian cancer patients (26).
Furthermore, the recently developed Tupaia paramyxovirus vector
platform may represent an alternative to MV, as no cross-neutral-
izing antibodies exist (34).

Therapeutic benefit of relevant MV-BiTE in the MC38-CEA
model was modest. Given the results obtained for UV-inactivated
MV-BIiTE in the B16-CD20-CD46 model, permissiveness for MV
does not seem to be the limiting factor. Rather, even untreated
MC38-CEA tumors harbor many activated T cells. Thus, there
seems little additional benefit of BITE-mediated T-cell recruitment
in this tumor model. Previous studies have shown that MV
encoding GM-CSF, anti-PD-L1, or IL12 are effective against
MC38-CEA, indicating that overcoming T-cell exhaustion and
activating further immune effector mechanisms is more
relevant in this model than the recruitment of additional T cells
(20, 21). These findings reflect that the specific immune environ-
ment determines whether a certain immunotherapy is effective
in a given tumor, demanding a personalized approach to
immunotherapy.

Treatment of patient-derived spheroid xenografts with PBMC
transfer demonstrated efficacy of MV-BiTE (MV-hCD3xCEA)
against genetically and functionally heterogeneous tumor cells
which closely mimic clinical reality. Interestingly, MV-hCD3xCEA
therapy did not induce negative selection of CEA-expressing
tumor cells. Analysis of intratumoral lymphocytes revealed lim-
ited persistence of transferred PBMCs. Thus, in this model, tem-
porary BiTE-mediated tumor cell lysis might have mitigated
negative selection of CEA-expressing target cells. Moreover,
MV-BITE treatment in the B16-CD20-CD46 model induced pro-
tective immunity against the parental cell line B16, indicating
protection also against tumor cells lacking the BiTE target antigen.
Although BiTEs have achieved compelling efficacy in hematologic
malignancies, both preclinical and clinical studies have so far
failed to demonstrate lasting responses at an acceptable level of
toxicity in solid tumors (8). In preclinical studies, short-term
reduction of tumor volume as well as prophylactic effects in lung
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colonization models have been reported (35, 36). Other BiTE
molecules and different formats of T-cell engaging bispecific
antibodies are currently under clinical investigation for treatment
of melanoma and colon cancer. Examples are IMCgp100
(ImmTAC targetinggp100, NCT03070392), MT-110 (BiTE target-
ing EpCAM, NCT00635596), catumaxomab (TrioMADb targeting
EpCAM, NCT01504256), RO6958688 (CrossMADb targeting CEA,
NCT02650713), and MGDO007 (DART-Fc targeting gpA33,
NCT02248805).

MV-BiTEs address two main challenges in BiTE therapy for solid
tumors: safety and delivery. Both in syngeneic and patient-derived
models, BiTE serum levels two to 24 hours after MV-BIiTE treat-
ment remained below detection limit, indicating a safety advan-
tage of MV-encoded BiTEs. Furthermore, intratumoral injection of
MV-BITE did not result in immediate systemic exposure to BiTEs.
However, intravenous injection may be the most desirable route
of administration in many clinical situations. In the xenograft
model, intravenous injection of MV-BiTE resulted in high sys-
temic and insufficient intratumoral BiTFE levels. In clinical trials,
tumor-restricted MV replication and protein expression after
intratumoral, intraperitoneal and also intravenous administra-
tion have been demonstrated (26, 37, 38). This reflects the
limitations of mouse models in the assessment of MV oncolysis.
In human subjects, more efficient MV-BiTE replication and
spread can be anticipated. With respect to the narrow therapeutic
window of T-cell engaging antibodies, MV-BiTE vectors could
be equipped with artificial riboswitches (39) to control viral
gene expression.

In terms of BiTE delivery, a single treatment cycle of four to
five intratumoral (i.t.) MV-BiTE injections was sufficient to
achieve durable responses. A recent study reported that injec-
tions with BiTE mRNA reduced to once weekly still achieved
efficacy against xenograft tumors (40). In contrast to non-
immunogenic mRNA, MV-BiTEs have additional immunosti-
mulatory properties, as virus-associated molecular patterns
activate innate immunity and oncolysis constitutes an in situ
tumor vaccination, enabling adaptive, long-term antitumor
immunity. Previous approaches to encode BiTEs in oncolytic
vaccinia virus and adenovirus yielded transient effects on tumor
volume in xenograft models and ex vivo tumor cell killing with
patient-derived specimens (10-12). Advantages of measles
vaccine strains include their excellent safety record (41) and
high immunogenicity (42). Currently, systematic comparisons
of different oncolytic vectors are lacking and should be pursued
in the future to identify relevant biomarkers for the choice of
therapeutic vector and optimal treatment options for individ-
ual cancer patients.

Remarkably, UV-irradiated MV-BiTE showed comparable
efficacy to non-irradiated MV-BiTE. To rule out that UV irradi-
ation improved MV immunogenicity by altered "danger
signals", we compared efficacy of irradiated and non-irradiated
unmodified MV, yielding comparable survival. These results
confirm the dominance of immunotherapeutic effects over
direct oncolysis in MV immunovirotherapy. The possibility
to use an inactivated, non-replicating virus for cancer therapy
can further add to the safety advantage of MV vectors in
oncolytic therapy.

To our knowledge, this is the first report of in vivo efficacy of an
oncolytic virus encoding BiTEs in both an immunocompetent
mouse model and patient-derived xenografts. We demonstrate
long-term tumor remissions without relapse and induction of
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protective immunity after MV-BiTE treatment. These data
provide proof of concept for efficacy against solid tumors by
targeted BiTE expression using an oncolytic vector. Thus, this
approach could circumvent limitations in current BiTE therapy
and may translate into meaningful therapeutic effects in treatment
of solid cancers.
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