A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors

Wenjie Liang1,2, Pengfei Yang3,4,5, Rui Huang5, Lei Xu3,4, Jiawei Wang1, Weihai Liu7, Lele Zhang8,9,10, Dalong Wan10, Qiang Huang1, Yao Lu11, Yu Kuang11, and Tianye Niu3,4

Abstract

Purpose: The purpose of this study is to develop and validate a nomogram model combing radiomics features and clinical characteristics to preoperatively differentiate grade 1 and grade 2/3 tumors in patients with pancreatic neuroendocrine tumors (pNET).

Experimental Design: A total of 137 patients who underwent contrast-enhanced CT from two hospitals were included in this study. The patients from the second hospital (n = 51) were selected as an independent validation set. The arterial phase in contrast-enhanced CT was selected for radiomics feature extraction. The Mann–Whitney U test and least absolute shrinkage and selection operator regression were applied for feature selection and radiomics signature construction. A combined nomogram model was developed by incorporating the radiomics signature with clinical factors. The association between the nomogram model and the Ki-67 index and rate of nuclear mitosis were also investigated respectively. The utility of the proposed model was evaluated using the ROC, area under ROC curve (AUC), calibration curve, and decision curve analysis (DCA). The Kaplan–Meier (KM) analysis was used for survival analysis.

Results: An eight-feature–combined radiomics signature was constructed as a tumor grade predictor. The nomogram model combining the radiomics signature with clinical stage showed the best performance (training set: AUC = 0.907; validation set: AUC = 0.891). The calibration curve and DCA demonstrated the clinical usefulness of the proposed nomogram. A significant correlation was observed between the developed nomogram and Ki-67 index and rate of nuclear mitosis, respectively. The KM analysis showed a significant difference between the survival of predicted grade 1 and grade 2/3 groups (P = 0.002).

Conclusions: The combined nomogram model developed could be useful in differentiating grade 1 and grade 2/3 tumor in patients with pNETs.

Introduction

Pancreatic neuroendocrine tumors (pNET) are heterogeneous neoplasm, which only accounts for about less than 5% of all pancreatic tumors (1). In the last two decades, we have seen a considerable increase of pNETs in the incidence and morbidity, especially due to the significant growth in diagnostic imaging with contrast-enhanced detection rate for small nonfunctional pNETs (2, 3). Despite growing experience in the diagnosis and treatment of pNETs, the prognosis of patients with pNETs still varied as the nonfunctional tumors tend to present at a higher histologic grade with notable symptoms causing mass effect and/or tumor metastases (4).

Due to the differences in tumor proliferative pattern, functional status, and biology between well-differentiated and poorly differentiated pNETs, treatment decisions for patients with pNETs are usually guided after staging of the disease has been

Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

W. Liang and P. Yang contributed equally to this article.

Corresponding Authors: Tianye Niu, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Huajiachi Campus, Zhejiang University, Hangzhou, Zhejiang 310000, China. Phone: 86-571-88981576; E-mail: tnyiu@zju.edu.cn; Yu Kuang, 4505 South Maryland Parkway, Box 453037, Las Vegas, NV 89121. Phone: 1-702-895-3555; Fax: 1-702-895-4878; E-mail: yy.kuang@unlv.edu; and Wenjie Liang, 79 F Qingchun Road, Hangzhou City, Zhejiang Province 310003, China. Phone: 86-571-8723611; Fax: 86-571-8723611; E-mail: baduen@zju.edu.cn

doi: 10.1158/1078-0432.CCR-18-1305

©2018 American Association for Cancer Research.
Translational Relevance

Despite growing experience in the diagnosis and treatment of pancreatic neuroendocrine tumors (pNET), the prognosis of patients with pNETs still varies as the preoperative prognostic stratification methods remain suboptimal. The significant limiting factor, tumor grade indexed by the proliferative indicator Ki-67 for prognosis within each tumor-node-metastasis stage, is usually assessed on postoperative specimens, thus hindering the individualized therapeutic decision making in clinical practice. A clinically translatable nomogram model incorporating the radiomics signature with tumor clinical stage developed in this study can effectively predict the pathologic grade of pNETs preoperatively (grade 1 vs. grade 2/3). The model also demonstrated a utility in predicting the postoperative prognosis of patients with pNETs. Therefore, the predictive nomogram model could serve as a preoperative, noninvasive, and precise evaluation tool for patients with pNETs, which may help clinicians tailor the treatment protocol for each individual patient and achieve a better clinical outcome in the future.

Materials and Methods

Workflow

The workflow of the analysis is summarized in Fig. 1 and can be divided into four parts: image acquisition, region of interest (ROI) segmentation, feature extraction, and tumor pathologic grade classifier construction. Contrast-enhanced CT images were acquired, and tumor regions were manually contoured by radiologists on all image slices. Quantitative radiomics features were then extracted from the contoured ROIs to build a machine learning–based model to classify the tumor pathologic grade.

Two separated datasets were used to develop and validate the machine learning–based tumor pathologic grade classifier. The data from Institution II (n = 51) were used as an independent validation dataset to verify the classifier developed.

After the quantitative radiomics features had been extracted from the contoured tumor regions, the Mann–Whitney U test and least absolute shrinkage and selection operator (LASSO) regression were applied to select the optimal radiomics features to build a radiomics signature. The radiomics signature generated was then integrated with clinical characteristics to generate a tumor pathologic grade classifier through the multivariable logistic regression method.

Patients

This retrospective study was approved by the Institutional Review Board of the First Affiliated Hospital and the Second Affiliated Hospital, Zhejiang University School of Medicine (Zhejiang, China). The signed informed consent forms were waived. This study was conducted according to the Declaration of Helsinki. The inclusion criteria for patients were as follows: (i) patients diagnosed with pNETs had surgical tumor specimens; (ii) patients underwent preoperative pancreatic contrast-enhanced CT scan within 1 month before surgery; and (iii) patients had complete clinical imaging data and pathologic specimens available for reevaluation. The exclusion criteria for patients included: (i) patients had a pNET that was too small to display clearly on CT; and (ii) patients had a pNET that displayed an
isodense pattern in the arterial phase of the contrast-enhanced CT scan. The specific patient selection pathway is shown in Supplementary Fig. S1.

Clinical characteristics [gender, age, endocrine symptoms (yes or no), multiple tumors (yes or no), maximum diameter, and clinical stage (I/IIA or IIIB/III) of the tumor] were obtained through review of clinical data by one surgeon with more than 10 years of clinical experience. Two pathologists with more than 10 years of experience in the diagnosis of abdominal tumor evaluated the pathologic grade (1 to 3) according to the 2010 WHO classification system (13). The two pathologists agreed on the final pathologic grading of tumors. The clinical stage of the tumor was determined preoperatively according to the American Joint Committee on Cancer TNM Staging System Manual, 7th edition (14). Follow-up data for the major patients with pNETs were also obtained through clinic visit or telephone communications.

Image acquisition
All patients underwent an abdominal contrast-enhanced CT scan preoperatively. Contrast-enhanced CT scan in Institution I was performed on three CT scanners including a 16-slice CT (Toshiba Medical Systems), a 64-, and a 256-slice CT (Philips Healthcare). The contrast-enhanced CT scan in Institution II was undertaken on two CT scanners, including a 40-slice CT (Siemens AG) and a 320-slice CT (Toshiba Medical Systems). CT scans in the two institutions used the same CT scanning parameters: tube voltage of 120 kVp, tube current of 125 to 300 mAs, pitch of 0.6 to 1.25mm, slice thickness of 3 to 5 mm, and reconstruction interval of 3 to 5 mm. The nonionic contrast agent Ultravist (Bayer Schering Pharma) was bolus-injected (1.5 mL/kg) with a high-pressure syringe at 3.0 mL/s. CT scans of the arterial phase and portal vein phase were carried out at 25 to 35 seconds and 55 to 75 seconds after injection, respectively.

ROI segmentation and radiomics feature extraction
On all slices, the entire tumor was manually contoured using ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php; ref. 15). According to the studies reported previously, when multiple pNETs are present, the tumor with the largest diameter is chosen for analysis (12, 16). The tumor boundary was contoured by a radiologist and validated by another radiologist. The two radiologists were blinded to the final pathologic result before ROI segmentation.

To normalize different image specifications due to the utilization of different CT scanners, image resampling and gray-level normalization were performed before radiomics feature extraction from image textures (17). All image data were resampled to a $1 \times 1 \times 1$ mm voxel space size, and the gray level was normalized to 64 levels for the calculation of radiomics features.

A total of 467 radiomics features were extracted from three-dimensional ROIs using an in-house–developed software with MATLAB 2016a (MathWorks Inc.). The radiomics features extracted included 6 histogram features, 22 gray-level co-occurrence matrix (GLCM) features, 13 gray-level size zone matrix (GLSZM) features, 5 neighborhood gray-tone difference matrix features, and 408 wavelet-based features. Details of the procedures for extraction of radiomics feature are described in Supplementary II.

Radiomics features selection and radiomics signature building
The training dataset was used to build the pathologic grade classifier. To normalize the different scales used in variables processed, all radiomics features in the training dataset were individually subtracted by the mean value of each feature and divided by their respective SD values. The same normalization method was then applied to the validation dataset using the mean values and SD values derived from the training dataset.

To build a realistic radiomics signature with the most suitable radiomics features combined, the LASSO regression method was
used to select the most robust and nonredundant radiomics features from the features extracted (18). The complexity of LASSO regression is controlled by a tuning parameter lambda (λ) with the rule that as the value of λ increases, the penalty for each variable coefficient also increases. Only variables with non-zero coefficients were selected in this method. Details of the LASSO method are described in Supplementary III.

The binomial deviance in the logistic regression model fitting method was used as the criterion to select the best value of λ (18, 19). The iterative selection process was undertaken by conducting 10-fold cross-validation method 100 times. The λ value with the least binomial deviance was used for the final LASSO regression. A newly-assembled radiomics signature was created by summing the radiomics features selected by LASSO, multiplied with their respective coefficients. The ROC curve and area under the ROC curve (AUC) were employed to evaluate the predictive accuracy of the radiomics signature developed.

Development of a radiomics model as a pathologic grade classifier
To consider the potential influence of clinical characteristics for each patient, a multivariable logistic regression analysis was applied to integrate the developed radiomics signature with the clinical characteristics, which were significantly different between G1 group and G2/3 group \([P < 0.01, 99\% \text{ confidence interval } (CI)] \). The combinations of developed radiomics signature with different clinical characteristics were tested using a multivariable logistic regression method.

The backward search method with Akaike Information Criterion (AIC) score was used to select the optimal combination, which assessed the quality of developed model with comprehensive consideration of the influences of the binomial deviance and the number of variables in the selection process (20). The model with the lowest AIC score was selected as a combined radiomics model as the final tumor pathologic grade classifier. Based on the tumor pathologic grade classifier determined, a combined nomogram was also generated.

Validation of the radiomics signature and the pathologic grade classifier developed
The radiomics signature and combined nomogram model developed from the training dataset were validated on the independent validation dataset. The ROC curves and AUC values derived from the independent validation dataset were respectively generated to further evaluate the predictive accuracy of radiomics signature and nomogram model developed. The efficiency of the combined nomogram model, radiomics signature, and clinical stage alone in predicting pathologic grades in pNETs was also evaluated using both datasets. A quantitative value to represent the radiomics signature of each patient in both datasets was calculated by the radiomics signature formula developed in the training dataset.

To demonstrate the overall improvement of the radiomics model combining radiomics signature and clinical factor as compared with the clinical factors alone, a best clinical model was also constructed based on the validation dataset to assess the added value of radiomics signature to the best clinical model. Multivariable logistic regression with a backward search method was used to construct the best clinical model using the factors gender, age, endocrine symptoms, multiple tumors, maximum diameter, and clinical stage of tumor. Then, a radiomics model was constructed by combining the best clinical model and the radiomics signature in the validation dataset. A comparison of the performances in histologic grade prediction between the best clinical model and the radiomics model was assessed in terms of AUC.

Calibration curves were applied to evaluate the predictive accuracy of the combined nomogram model generated. The calibration curve is the curve with the nomogram-predicted probability of G2/3 tumors as abscissa and the actual rate acquired by bootstrapping method as ordinate. The degree of overlap between the calibration curve and the diagonal in the graph reflects the predictive accuracy of the combined nomogram model.

Decision curve analysis (DCA) was employed to evaluate the clinical utility of the combined nomogram model developed in the training dataset. The x axis of the decision curve is the threshold of the predicted probability using the combined nomogram to classify G1 patients and G2/3 patients. The y axis shows the clinical decision net benefit for patients based on the classification result in this threshold. The decision curves of the treat-all scheme and the treat-none scheme are used as references in the DCA. The definitions of net benefit, treat-all, and treat-none scheme were described in Supplementary IV. The area under the decision curve showed the clinical utility of the combined nomogram tested.

Clinical and biological significance analysis
To assess the clinical significance of radiomics features, a correlation analysis between the radiomics features included in the radiomics signature and the clinical characteristics (tumor pathologic grade, endocrine symptoms, clinical stage) was conducted using the Spearman rank correlation method. To assess the biological significance of the radiomics features, an association between radiomics features and Ki-67 index and the rate of nuclear mitosis which recognize a core antigen present in proliferating cells but absent in quiescent cells was also performed using the Spearman rank correlation method. The details of the Ki-67 index and rate of nuclear mitosis were described in Supplementary V. To assess the significance of the histologic grades predicted by the radiomics signature and the nomogram model, a correlation analysis between the probability of having G2/3 pNETs predicted by the radiomics signature and the nomogram model and Ki-67 index and rate of nuclear mitosis was also performed.

Survival analysis
Survival analysis was performed to explore the potential of the tumor pathologic grade classifier in survival prediction. Patients from the two institutions were divided into the G1 group and the G2/3 group according to the prediction results using the threshold computed from the training dataset through the Youden Index. The Kaplan–Meier (KM) method was used for the survival analysis of predicted G1 group and G2/3 group.

Statistical analysis
Differences of clinical characteristics between the training dataset and the validation dataset as well as between G1 group and G2/3 group in their respective datasets were assessed using independent sample t test, Mann–Whitney U test, or \(\chi^2 \) test with a statistical significance level set at 0.01 where appropriate. The Mann–Whitney U test was applied to select radiomics features that were significantly different between G1 and G2/3 groups \((P < \)
Characteristics Training set Validation set

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Grade 1 (n = 42)</th>
<th>Grade 2/3 (n = 44)</th>
<th>p</th>
<th>Grade 1 (n = 28)</th>
<th>Grade 2/3 (n = 23)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>20</td>
<td>26</td>
<td>0.286</td>
<td>9</td>
<td>13</td>
<td>0.080</td>
</tr>
<tr>
<td>Female</td>
<td>22</td>
<td>18</td>
<td></td>
<td>19</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Age (years, range)</td>
<td>29–81</td>
<td>25–78</td>
<td>0.646</td>
<td>29–82</td>
<td>35–79</td>
<td>0.784</td>
</tr>
<tr>
<td>Endocrine symptom</td>
<td></td>
<td></td>
<td>0.026</td>
<td></td>
<td></td>
<td>0.391</td>
</tr>
<tr>
<td>With</td>
<td>13</td>
<td>5</td>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>29</td>
<td>39</td>
<td></td>
<td>22</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Multiple tumor</td>
<td></td>
<td></td>
<td>0.529</td>
<td></td>
<td></td>
<td>0.466</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>40</td>
<td>43</td>
<td></td>
<td>27</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Maximum diameter (cm, range)</td>
<td>2.0 (0.8–6.5)</td>
<td>4.1 (1–14)</td>
<td><0.001a</td>
<td>2.3 (0.8–7.5)</td>
<td>5.7 (1.4–16.0)</td>
<td><0.001a</td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/IIa</td>
<td>42</td>
<td>29</td>
<td><0.001a</td>
<td>28</td>
<td>14</td>
<td>0.001a</td>
</tr>
<tr>
<td>III/IV</td>
<td>0</td>
<td>15</td>
<td></td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Supplemental VI and Supplementary Table S4). The specificity for each feature selected was derived from the LASSO regression method. A quantitative value to represent the radiomics signature (Equation 1) includes one run-length variance feature of GLRLM and seven wavelet-based features. Details of the procedure for construction of the radiomics signature are described in Supplementary Fig. S3.

Results

Patients' characteristics

Based on the criteria for patient selection, 137 patients diagnosed with pNETs between July 2010 and June 2017 from the First Affiliated Hospital, Zhejiang University School of Medicine (Institution I), and the Second Affiliated Hospital, Zhejiang University School of Medicine (Institution II), were included in this study. Eighty-six patients from Institution I were taken as the training dataset, and the other 51 patients from Institution II were used for the independent validation dataset.

The training dataset and validation dataset had an even distribution in patient characteristics (Supplementary Table S1). No significant difference was found in pNETs pathologic grade and clinical characteristics (gender, age, endocrine symptoms, multiple tumors, maximum diameter, and clinical stage of the tumor) between the training dataset and validation dataset. The detailed distribution of clinical characteristics in the G1 group and G2/3 group was summarized in Table 1. The maximum diameter and clinical stage had a significant difference between the G1 group and G2/3 group both in the training dataset and validation dataset. Fifteen patients (10.9%) were confirmed deceased in this study, and their survival time ranged from 2 months to 50 months.

Radiomics features selection and radiomics signature building

Two hundred and thirty-three features with statistical significance (P < 0.01) between the G1 and G2/3 groups were preliminarily selected from the 467 radiomics features in the training dataset. A radiomics signature was further constructed based on eight features with respective nonzero coefficients selected from these 233 features through LASSO regression method (Equation 1). The coefficient for each feature selected was derived from the LASSO regression method. A quantitative value to represent the radiomics signature (Equation 1) includes one run-length variance feature of GLRLM and seven wavelet-based features. Details of the procedure for construction of the radiomics signature are described in Supplementary Fig. S3.

The utility of histologic grade prediction using developed radiomics signature

The developed radiomics signature model showed a favorable result in predicting the histologic grade (G1 vs. G2/3) that produced an AIC of 0.870 in the training set (95% CI, 0.780–0.933) and 0.862 in the validation set (95% CI, 0.736–0.942), respectively. The ROC curves of radiomics signature derived from the two datasets were shown in Fig. 2A and B. To demonstrate the effectiveness of radiomics signature model at the individual scale, the quantitative values of radiomics signature for each patient regarding the classification of G1 and G2/3 groups were shown in Fig. 2C and D. With the calculated threshold using Youden Index for classification, the sensitivity in the training and validation set was 88.10% and 89.29%, respectively. This result demonstrated the high accuracy of the developed radiomics signature for the classification of G1 and G2/3 pNETs.

Combined nomogram construction

A radiomics model incorporating the developed radiomics signature with clinical stage with the lowest AIC score was chosen as the best tumor pathologic grade classifier. The results showed that radiomics signature (P < 0.001) and clinical stage (P < 0.001) were significant, independent factors in the training cohort (Supplementary VI and Supplementary Table S4). The specific process...
of the backward search method for selecting the best combination was described in Supplementary VI.

To visualize the multivariable logistic regression model, a combined nomogram was constructed from the radiomics model as shown in Fig. 3A. The usefulness of combined nomogram was also confirmed in the ROC analysis with an AUC of 0.906 (95% CI, 0.824–0.959) for the training set and an AUC of 0.891 (95% CI, 0.772–0.961) for the validation set (Fig. 3B and C). The AUC value revealed the high performance of tumor grade discrimination using the combined nomogram.

The results of using the combined nomogram to predict the tumor pathologic grades with the recommended threshold were shown in Fig. 3D and E. As calculated by the Youden Index, the threshold to differentiate tumor pathologic grades was 0.505 for the training dataset.

The calibration curve and the Hosmer–Lemeshow test showed a high accuracy of the nomogram for predicting tumor pathologic grades both in the training dataset (P = 0.9513, 95% CI) and validation dataset (P = 0.8592, 95% CI; Fig. 4A and B). The DCA was used to demonstrate clinical decision utility of the combined nomogram.

The combined nomogram showed a better performance in predicting the tumor pathologic grades (AUC = 0.894: 95% CI, 0.830–0.940) than the radiomics signature (AUC = 0.857: 95% CI, 0.787–0.911) and clinical stage (AUC = 0.679: 95% CI, 0.594–0.756) alone (Fig. 5A). Specifically, the combined nomogram showed a significant improvement than the radiomics signature alone in the Delong Test (P = 0.0065). The high predictive performance of the proposed nomogram model evaluated in the lumped group of both datasets was consistent with that in the separated training and validation sets.

For comparison purpose, the clinical stage and maximum diameter of the tumor were selected through backward search method to build the best clinical model. The radiomics nomogram model incorporating the best clinical model and radiomics signature showed an AUC of 0.885 (95% CI, 0.765–0.957), higher than the best clinical model alone (AUC = 0.856: 95% CI, 0.730–0.939). The radiomic signature alone performed comparably to clinical features. The improvement of the combined radiomics nomogram model over clinical features alone, when used optimally, is modest.

The correlation analysis demonstrated the association between the selected radiomics features and the tumor pathologic grades, endocrine symptoms, and clinical stages. Both the radiomics signature and nomogram were associated with Ki-67 expression level and the rate of nuclear mitosis (P < 0.001), suggesting a correlation of radiomics features with cell proliferation of tumors. The radiomics nomogram had a higher correlation coefficient with Ki-67 index and the rate of nuclear mitosis than the radiomics signature in the correlation analysis (Supplementary V).

The KM survival analysis (Fig. 5B) showed a significant difference between the nomogram-predicted G1 group and
nomogram-predicted G2/3 group, which suggested the prognostic value of the combined nomogram \(P = 0.0002 \).

Discussion

We investigated the utility of a combined nomogram model to preoperatively predict tumor pathologic grades in patients with pNETs. An eight-feature–based radiomics signature was found to be effective for tumor grade classification. This signature could stratify patients into G1 and G2/3 groups with an AUC of 0.857. The predictive performance was further significantly improved by combining the radiomics signature with clinical stage as a combined nomogram model, achieving an AUC of 0.894. The combined nomogram developed was also validated with the independent dataset from the other institution, suggesting the reproducibility and reliability of the developed prediction model.

Previous studies suggested the proteogenomics and tumor morphology could be reflected on the medical images (21). In clinics, the tumor grade is routinely determined by Ki-67 expression which is a crucial component with intratumoral heterogeneity in the complex proteogenomics of tumors (22). Patrick and colleagues investigated the biological basis of radiomics phenotypes in lung cancer. They showed that radiomics approaches permit noninvasive assessment of both molecular and clinical characteristics of tumors in lung cancer (23). We demonstrated the association of the developed radiomics signature and nomogram with Ki-67 expression and rate of nuclear mitosis in pNETs. The results demonstrated the capability of radiomics nomogram
model in reflecting the underlying biological mechanisms within tumors. In the optimization process of LASSO method for radiomics feature selection, the wavelet features had the highest weights in the radiomics signature, suggesting the vital role of wavelet-based features in the prediction model. This observation is consistent with previous studies which included wavelet-based features in the radiomics model construction (24–26). The wavelet transformation splits imaging data into different frequency components on three axis of the tumor region which may further explore the spatial heterogeneity at multiple scales within tumor regions (24).

Figure 4.
The calibration curve (training set: A; validation set: B) and decision curve (training set: C; validation set: D) of the combined nomogram.

Figure 5.
A, ROC curves for the nomogram, radiomics signature, and clinical stage in both datasets. B, ROC curves for the best clinical model and radiomics model in the validation dataset. C, Survival analysis using the known grades and nomogram-predicted tumor grades. The KM analysis shows a significant difference between the predicted G1 group and G2/3 group ($P = 0.0002$).
The capability of the combined nomogram for preoperative prediction of the pathologic grade in pNETs may facilitate personalized treatment decisions (27). For functional pNETs, parenchyma-sparing pancreatic resection is a routine treatment strategy. However, the postoperative relapse rate varied within the patients with functional pNETs suggesting that parenchyma-sparing pancreatic resection might be insufficient for this subset group of patients. The previous studies indicated that a high risk of postoperative recurrence exists in patients with G2/3 tumors (28). The dilemma is that the tumor grading information is invisible preoperatively in clinical practice, thus compromising the effectiveness of surgery for pNETs patients.

The combined nomogram developed could effectively identify the more aggressive functional pNETs before operations. As such, it could stratify the patients with pNETs into G1 and G2/3 groups, in which G1 group could receive parenchyma-sparing pancreatic resection while G2/3 group might undergo comprehensive treatment strategies including radical surgical resection and systematic therapy to improve the long-term prognosis (29).

For instance, in the operative management of insulinomas, malignant insulinomas should be precisely differentiated from benign insulinomas before operation as malignant insulinomas would require relative extensive surgical resections instead of a minimally invasive surgery (28, 30). At the same time, systematic treatment is also needed for these patients with malignant insulinoma. The combined nomogram developed could provide clinicians such combined radiomics feature and clinical stage-derived grading information for clinical decision making of insulinomas so that a tailored treatment strategy could be determined preoperatively.

For nonfunctional pNETs, to the best of our knowledge, there is no complete consensus as of yet in the clinical treatment scheme of choice. Tumor diameter is a key factor in determining whether or not operative management would be used, as it is closely related to the malignant activities of pNETs (31). In clinical practice, a tumor diameter of 2 cm is conventionally used as a cutoff line to decide the patients with nonfunctional pNETs either receive a standard resection or perform a conservative management (29, 30). In addition, multiple endocrine neoplasia type 1 (MEN1) patients with pNETs were believed to achieve little survival benefit through surgical excision (32). However, a tumor diameter of 2 cm is not a reliable and reproducible factor to make the treatment decision as a recent comparative study showed that patients with nonfunctional pNETs of diameter > 1.5 cm could also benefit from operative management (33).

The treatment strategies based on tumor diameter are not practically perfect in nonfunctional pNETs. It could be better fully considering tumor grade of pNETs in the treatment of choice for this group of patients. The combined nomogram developed would afford a reliable tool to identify pNETs’ grades. Combining tumor diameter with tumor grade might be also be helpful for clinicians to determine personalized treatment strategies preoperatively. Although endoscopic ultrasound-guided fine-needle aspiration can be used for the pathologic grading of pNETs (34, 35), this method is associated with the risk of interventional procedures. The limitation of tumor location also prevents it from being widely used in clinics for preoperatively grading. The proposed combined nomogram for pNETs’ pathologic grading is atraumatic, easy to use as compared with the fine-needle aspiration procedure and has the potential for preoperative evaluations with high accuracy in clinics.

Furthermore, the predictive model constructed in this study also shows an effectiveness in predicting the postoperative prognosis of patients with pNETs. The survival curves predicted by the combined nomogram model agreed well with the real survival curves derived from patients’ postoperative follow-up data. There was a significant difference in the combined nomogram model–predicted survival curves between G1 patients and G2/3 patients which implied the capability of the combined nomogram as a promising prognostic biomarker.

A study on the prognosis of 3851 cases of resected pNETs confirmed that the independent risk factors for the prognosis are age, pathologic grade, metastatic state, tumor function, and resection mode, wherein the pathologic grade is a significant limiting factor for prognosis (25). A series of studies also suggested that different staging systems, including American Joint Committee on Cancer and European Neuroendocrine Tumor Society (ENETS) staging systems, have strong predictive capabilities for pNETs’ prognosis which could be used to guide clinical treatment of pNETs (36–39). More recently, a modified ENETS system was proposed to deliver a better prognostic stratification for pNETs patients (1). The combined nomogram incorporating radiomics signature with clinical stage could be more useful than using the radiomics signature alone to provide prognostic information for different individuals with pNETs.

A multiple-factor–based omics method is usually preferable to depict the complex heterogeneity within the pNETs’ regions. Using multiple factors to predict the tumor grades could potentially pinpoint the interactions of different features related to tumor growth. However, using multiple factors to predict the tumor grades might also increase the clinical burdens to the patients while collecting different omics datasets. The developed combined nomogram incorporates radiomics features with routinely available clinical characteristics which might afford a clinically translatable paradigm easy to implement in the clinical setting.

As a retrospective study, the limitations of our study include that genomics and proteomics data cannot be incorporated into the nomogram model to classify G1 and G2/3 pNETs due to the fact that the corresponding tumor specimens were not well preserved. In addition, the validation cohort used in this study is relatively small in sample size. Moreover, as G3 group is relatively small in sample number which is not compatible for machine learning algorithms, G2/3 pNETs were not further separated into G2 and G3 patients. A future prospective study to separate G2 and G3 groups is needed to further validate the utility of nomogram model developed, thus facilitating a better personalized treatment strategies selection. Furthermore, due to the relatively short follow-up time, median overall survival for resectable pNETs was not available. We will continue to follow up with these patients to secure a more complete prognosis status.

The developed combined nomogram model using radiomics signature and tumor clinical stage can effectively predict the pathologic grade of pNETs preoperatively. The model also demonstrated a utility in predicting the postoperative prognosis of patients with pNETs. The predictive
nomogram model could serve as a preoperative, noninvasive, precise evaluation tool for patients with pNETs which may assist clinicians to tailor the treatment protocol for each individual patient and achieve a better clinical outcome in the future.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: W. Liang, P. Yang, Y. Kuang, T. Niu
Development of methodology: W. Liang, P. Yang, Y. Kuang, T. Niu
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): W. Liang, Y. Lu, Y. Kuang
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): W. Liang, P. Yang, Q. Huang, Y. Lu, Y. Kuang, T. Niu
Writing, review, and/or revision of the manuscript: W. Liang, P. Yang, R. Huang, Y. Kuang, T. Niu

Acknowledgments
This work was supported by the Zhejiang Provincial Natural Science Foundation of China [LY17H160010: W. Liang, LR16H10001: T. Niu], National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China [2015AA020917: T. Niu], National Key Research Plan by the Ministry of Science and Technology of China [2016YFC0104507: T. Niu], National Natural Science Foundation of China [81202101: T. Niu], and the NCI of the NIH under Award Number P30CA042014 (Y. Kuang).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 27, 2018; revised September 28, 2018; accepted October 18, 2018; published first November 5, 2018.

References

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): W. Liang, P. Yang, R. Huang, L. Xu, J. Wang, W. Liu, L. Zhang, D. Wan, Q. Huang, Y. Kuang, T. Niu

Study supervision: W. Liang, Y. Kuang, T. Niu

www.aacjrournals.org
Clin Cancer Res; 25(2) January 15, 2019

593

Published OnlineFirst November 5, 2018; DOI: 10.1158/1078-0432.CCR-18-1305

Downloaded from clinccancerres.aacrjournals.org on January 30, 2020. © 2019 American Association for Cancer Research.
A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors

Wenjie Liang, Pengfei Yang, Rui Huang, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-18-1305

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2018/11/03/1078-0432.CCR-18-1305.DC1

Cited articles
This article cites 38 articles, 4 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/25/2/584.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/25/2/584.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/25/2/584.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.