Predictive Value of Preclinical Toxicology Studies for Platinum Anticancer Drugs1,2

Diana L. Clark,3 Paul A. Andrews, David D. Smith, Joseph J. DeGeorge, Robert L. Justice, and Julie G. Beitz

ABSTRACT

Rodent and nonrodent toxicology studies are currently expected to support Phase I trials of antineoplastic drugs in the United States. To determine the predictive value of these studies, we initiated a project to compare preclinical and clinical toxicity data within various drug classes. The first class analyzed was the platinum anticancer drugs. Twelve platinum analogues that had both preclinical (mice, rats and/or dogs) and clinical data from matching drug administration schedules were identified. The rodent LD\textsubscript{10} (the dose that causes lethality in 10\% of treated animals) or dog toxic dose high (a dose that when doubled causes lethality in dogs) correlated well with the human maximally tolerated dose that causes lethality in 10\% of treated animals) or dog permitted. Higher starting doses for this drug class than conventionally permitted. The efficiency of Phase I trials could have been improved without sacrificing patient safety by allowing higher starting doses for this drug class than conventionally permitted.

INTRODUCTION

The goals of preclinical toxicology studies for oncology drugs are: (a) to identify a starting dose that is both safe and that minimizes the number of patients treated with ineffective doses; (b) to identify important potential clinical toxicities; and (c) to assist in the design of human dosing regimens and escalation schemes (1). Since 1982, both rodent and nonrodent toxicology studies have been requested to support Phase I trials of antineoplastic drugs conducted under an IND4 in the United States (2, 3). In contrast, rodent toxicology studies alone can support initial clinical trials of antineoplastic drugs conducted under the auspices of the EORTC and CRC (4). The EORTC and CRC have documented their experience with this approach (5, 6). The approach initially promulgated by the NCI (2, 3) and adopted by the FDA has not been extensively examined.

The FDA has one of the largest collections of preclinical and clinical data for investigational and marketed anticancer drugs. We have begun to analyze this data and the biomedical literature for the value of preclinical toxicology studies in predicting the MTD and end-organ toxicities in humans. Due to the quantity of the drugs and associated data available for analysis, we began by evaluating the data for a single drug class, the platinum anticancer drugs. We determined the predictive value of the rodent (mouse or rat) LD\textsubscript{10} or dog TDH (a dose that when doubled causes lethality in dogs) for estimating a safe starting dose in humans and compared the major toxicities reported in experimental species and humans. From our analyses we determined that: (a) either rodents or dogs may be used to safely predict the starting doses of platinum drugs in humans, but mice were less accurate than rats and dogs; (b) calculation of the starting dose based on one-tenth the rodent LD\textsubscript{10} may be too conservative for platinum anticancer drugs; and (c) rodents and dogs were equally predictive of DLTs in humans.

MATERIALS AND METHODS

Data were collected for 12 platinum analogues (cisplatin, carboplatin, tetraplatin, iproplatin, CI-973, enloplatin, JM216, 1-NDDP, lobaplatin, oxaplatin, siroplatin, and zeniplatin) for which Phase I results were available (Table 1). Data were garnered either from the biomedical literature or from studies supporting INDs submitted to the FDA (7–18). Only preclinical or clinical studies with drug administration schedules of either single dose or once daily for 5 days (daily \texttimes{} 5) were analyzed. LD\textsubscript{10}s were determined by Probit analysis or, if insufficient data were available for a Probit calculation, as the dose that actually caused 10\% lethality. If an LD\textsubscript{10} was not available by either of these approaches, then the LD\textsubscript{10} was taken as the highest non-

\begin{thebibliography}{99}

\bibitem{1} The abbreviations used are: IND, investigational new drug application; EORTC, European Organization for Research and Treatment of Cancer; CRC, Cancer Research Campaign; NCI, National Cancer Institute; FDA, Food and Drug Administration; MTD, maximally tolerated dose; LD\textsubscript{10}, dose that causes lethality in 10\% of treated animals; TDH, toxic dose high; DLT, dose-limiting toxicity; AUC, area under the curve.

\end{thebibliography}
Table 1
LD$_{10}$, TDH, and MTD values for platinum drugs

<table>
<thead>
<tr>
<th></th>
<th>Single dose (mg/m2)</th>
<th>Daily \times 5 (mg/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LD$_{10}$ Mouse</td>
<td>LD$_{10}$ Rat</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>495</td>
<td>312</td>
</tr>
<tr>
<td>CI-973</td>
<td>263</td>
<td>225</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>Enolplatin</td>
<td>561</td>
<td>762</td>
</tr>
<tr>
<td>Iproplatin</td>
<td>108</td>
<td>264</td>
</tr>
<tr>
<td>JM216</td>
<td>648</td>
<td>930</td>
</tr>
<tr>
<td>L-NDDP</td>
<td>102</td>
<td>150</td>
</tr>
<tr>
<td>Lobaplatin</td>
<td>48</td>
<td>89</td>
</tr>
<tr>
<td>Oxaliplatin</td>
<td>50</td>
<td>115</td>
</tr>
<tr>
<td>Spiroplatin</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Tetraplatin</td>
<td>43</td>
<td>54</td>
</tr>
<tr>
<td>Zeniplatin</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

MTD:LD$_{10}$ and MTD:TDH Ratios. The ratio of the human MTD to the rodent LD$_{10}$ or dog TDH was determined for each drug schedule. The ratio indicates whether the preclinical results under- or overpredicted the human MTD. The ratios for the single-dose schedule are shown in Fig. 1A. In general, the human MTDs were underpredicted for these platinum drugs. The mean ratios ± SE were 2.36 ± 0.33, 1.74 ± 0.24, and
1.67 ± 0.17 for the mouse, rat, and dog, respectively. These means were not significantly different from each other (ANOVA, P > 0.05). All of the ratios were >1, except for a single drug in both the mouse and dog and a second drug in the rat.

There were far fewer LD_{10} and TDH determinations in the daily × 5 schedule. With this schedule of administration, LD_{10} or TDH values were determined for only four, three, and four drugs in mice, rats, and dogs, respectively (Table 1). Two drugs had daily × 5 LD_{10} determinations in mice and rats, as well as a TDH determination in dogs. For these drugs, the ratios of MTD to LD_{10} largely agreed between the two rodents (0.43 versus 0.44 and 1.11 versus 0.88), but the ratios of MTD to TDH (2.00 and 0.56) were markedly different from the ratios from the rodent studies (Fig. 1B). In contrast, with a third drug, the MTD to dog TDH ratio was similar to the MTD to mouse LD_{10} ratio (1.04 and 1.11, respectively).

Of the eight drugs that had LD_{10} determinations in both mice and rats in the single-dose schedule, seven drugs have lower LD_{10} values in mice (ranging from 41–80% of the rat values; Fig. 2A). Nine drugs had LD_{10} determinations in at least
one rodent, plus a TDH determination from dog studies. Every TDH value was higher than the corresponding most sensitive rodent LD10 value (Fig. 2B), showing that dogs were less sensitive than rodents to these platinum anticancer drugs.

Starting Dose Determinations. Starting doses for Phase I trials in anticancer agents are generally determined from one-tenth the rodent LD10 unless that dose is severely toxic to nonrodents. In that case, one-third the dog TDL value is used as the starting dose (1). TDH values are generally twice the TDL value, therefore, the starting dose may also be determined from one-sixth the TDH (1). Alternatively, the data available for platinum anticancer drugs suggests that selecting one-third the TDH for dogs or one-third the LD10 for the most sensitive rodent species for the starting dose would have permitted both safe and efficient Phase I trials if using a modified Fibonacci dose-escalation scheme. For the single-dose schedule, using one-third of the LD10 of the most sensitive rodent species for the starting dose would have allowed the MTD to be reached in an average of 4.4 fewer dose levels than if the starting dose was chosen using the conventional method of one-tenth the rodent LD10 (Table 2). The higher starting dose would have still allowed a reasonable degree of safety because a minimum of two additional dose levels would have been evaluated before reaching the MTD. Similarly, using one-third the dog TDH as the starting dose would have resulted in an average of 2.6 fewer dose levels to reach the MTD than a starting dose of one-sixth the TDH. Patient safety is unlikely to be jeopardized if one-third the LD10 from the most sensitive rodent is used as a starting dose for a new platinum drug similar to the 12 drugs reported here. On the basis of a linear regression analysis of this dataset, the probability of starting at or above the MTD approaches zero when using one-tenth the most sensitive rodent LD10 as the starting dose. If one-third the most sensitive rodent LD10 is used as the starting dose, then the probability increases to only 0.0002%.

Correlating Preclinical Studies with the MTD. The human MTD was plotted versus the rodent LD10 or dog TDH on a mg/m2 basis. Linear regression lines were calculated after logarithmic transformation of the data. Single-dose administration schedule only (A) or combined single-dose and daily × 5 administration schedules (B) are shown. Mouse (——, ●), Rat (——, □), Dog (——, ▲).

<table>
<thead>
<tr>
<th>Fraction of LD10 or TDH</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10 or 1/6a</td>
<td>1/3</td>
</tr>
<tr>
<td>Mouse</td>
<td>8.9 ± 0.6b</td>
</tr>
<tr>
<td>6(11)</td>
<td>3(7)</td>
</tr>
<tr>
<td>Rat</td>
<td>7.8 ± 0.5</td>
</tr>
<tr>
<td>4(10)</td>
<td>2(6)</td>
</tr>
<tr>
<td>Most sensitive rodent</td>
<td>9.2 ± 0.5</td>
</tr>
<tr>
<td>7(11)</td>
<td>3(7)</td>
</tr>
<tr>
<td>Dog</td>
<td>5.9 ± 0.5</td>
</tr>
<tr>
<td>3(7)</td>
<td>2(4)</td>
</tr>
</tbody>
</table>

*One-tenth the rodent LD10 or one-sixth the nonrodent TDH.

Mean ± SE (range).

Fig. 3 Collective correlation of human MTD to the rodent LD10 or dog TDH on a mg/m2 basis. Linear regression lines were calculated after logarithmic transformation of the data. Single-dose administration schedule only (A) or combined single-dose and daily × 5 administration schedules (B) are shown. Mouse (——, ●), Rat (——, □), Dog (——, ▲).
were 0.874, 0.459, and 0.688 for the mouse, rat, and dog, respectively (data not shown). When the data from the single-dose and daily \(\times 5 \) schedules were combined, the correlation coefficients changed slightly to 0.706, 0.843, and 0.874 for mouse, rat, and dog, respectively (Fig. 3B).

Correlating Toxicity Findings. In addition to predicting the human MTD and the appropriate starting dose for Phase I trials, preclinical studies may also forecast side effects that will be encountered when the drug is administered to humans. Toxicities observed in Phase I trials of platinum anticancer drugs were predominantly hematological, gastrointestinal, renal, or neurological in origin. Importantly, the DLT (either myelosuppression, nephrotoxicity, or neurotoxicity) in this class of drugs was predicted preclinically in the majority of drug schedules (Table 3). Human DLTs were observed in 100% (7 of 7) of the relevant mouse studies, 87% (7 of 8) of the relevant rat studies, and 82% (9 of 11) of the relevant dog studies.

Every platinum anticancer drug caused myelosuppression and gastrointestinal toxicities (nausea and vomiting) when administered to patients (Table 3). The myelosuppression was manifested primarily by thrombocytopenia, but also by leukopenia and anemia. Overall, rodents (mouse and rat combined) predicted hematological toxicity in 87% (13 of 15) of the drug schedules, whereas dogs predicted myelosuppression in 82% (9 of 11) of the drug schedules. Fifty-three percent (8 of 15) of the rodent studies manifested gastrointestinal distress as diarrhea, whereas dogs exhibited either vomiting or diarrhea in 82% (9 of 11) of the studies.

It is difficult to compare nephrotoxicity between animals and humans because patients often received prophylactic measures to prevent nephrotoxicity (e.g., hydration and/or forced diuresis), whereas experimental animals may not have. Nephrotoxicity in humans, usually evident by increased blood urea nitrogen or decreased creatinine clearance, was reported for three drugs in the single-dose administration schedule. Two of the human nephrotoxic drugs had toxicity studies performed in rats, and renal damage was observed with both of them. All drugs causing human nephrotoxicity were also nephrotoxic to dogs. There were no studies in mice that assessed kidney damage for the three human nephrotoxic drugs. In addition, rats and dogs suffered renal toxicity with four and five drugs, respectively, that were not nephrotoxic to humans. Only one drug caused renal damage in all three experimental species (mice, rats, and dogs), but no nephrotoxicity was reported in humans when this drug was coadministered with mannitol to prehydrated patients. One drug caused nephrotoxicity in both schedules, whereas two drugs manifested renal toxicity only when administered on the daily \(\times 5 \) schedule.

Although difficult to detect and interpret in the preclinical oncology drug development setting, neurotoxicity with platinum drugs was often predicted by the animal studies. Neurotoxicity was detected in Phase I trials of five drugs as evidenced by parasthesia, myalgia, or coma. Investigations in rats were performed with four of the five neurotoxic drugs. For three of these drugs, rats exhibited neurotoxicity (e.g., piosis, ataxia, tremor, or coma). Toxicology studies in both mice and rats were performed with only one of the neurotoxic drugs. Piosis, trembling, or seizures were observed in the mice, but not in the rats for this drug. The dog seemed to be less susceptible to measurable neurotoxicity because only one of the five drugs caused neurotoxicity (e.g., tremor, ataxia).

No hepatotoxicity has been detected in the Phase I setting with these platinum analogues despite six drugs causing elevated liver enzymes in dogs. One drug also caused hepatotoxicity in rats, but elevated liver enzymes were never reported in mice. The dog, thus, seemed to be more susceptible than humans to liver damage from these agents. Although pulmonary toxicity was never reported in humans during a Phase I trial either, pulmonary edema and hemorrhage were reported in mice and dogs for one drug, and dyspnea was reported in the rat for two
additional drugs. Only one preclinical study suggested cardio-
toxicity from platinating agents: dogs exhibited bradycardia
with one drug although no cardiotoxicity has been reported in
patients.

DISCUSSION

The preclinical studies needed to support entry of oncology
drugs into Phase I testing have changed considerably over the
years (20, 21). Since 1982, rodent and nonrodent studies have
been expected by the FDA (1–3). In contrast, the CRC and the
EORTC have relied on preclinical testing of oncology drugs in
rodents only (4). Grieshaber and Marsoni (2) documented the
success of the current United States practice for the first seven
drugs developed by the NCI under this system. The success of
the rodent-only approach, as practiced in Europe, has been more
extensively examined (5, 6). The drugs examined in these
studies included alkylating agents, tubulin binding agents, DNA
binding agents, antiiendocrine agents, and others, including JM
216, a platinum anticancer agent (5, 6). For these drugs, unac-
ceptable toxicities were never encountered at the Phase I starting
dose that was determined from one-tenth the mouse LD_{10}.
Although the requirement for rodent-only toxicology studies
decreased the expense and time of the nonclinical development
of an anticancer agent, for some drugs this approach may have
led to numerous escalations in the Phase I setting (5).

To determine the value of rodent and nonrodent toxicology
studies in oncology drug development, we have begun to retro-
spectively examine submissions to the FDA and studies in the
biomedical literature. By comparing quantitative and qualitative
findings between experimental species and humans, we intend
to evaluate the appropriateness of current regulatory practices
at the FDA. The platinum anticancer agents were the first group of
drugs we examined.

Determining the starting dose for Phase I studies is a
primary function of preclinical testing. In the platinum antican-
cer drug class, the ratios of human MTD to dog TDH seem to
cluster more closely to one than the ratios of human MTD to
mouse or rat LD_{10}. The mean ratios, however, were not statis-
tically different from one another. The majority of the studies in
all species underpredicted the human MTD. These data suggest
that higher starting doses could have been allowed without
compromising safety. Our analysis shows that if starting doses
were determined from one-sixth dog TDH values, rather than
from one-tenth rodent LD_{10} values, fewer dose escalations
would have been required to reach the MTD. Alternatively,
one-third (rather than one-tenth) the rodent LD_{10} would have
diminished the number of escalation steps required in a
Phase I trial without compromising patient safety. One-third the
mouse or rat LD_{10} approximated one-sixth the dog TDH for this
class of drugs, so there is no clear advantage to using one
method over another for determining the starting dose.

Another important function of preclinical testing is to fore-
cast the potential toxicities that may be encountered in patients.
For these platinum drugs there was no substantive difference in
the value of rodents versus dogs in predicting the human tox-
icities, DLT or otherwise. The DLT was observed as a toxicity
in 93% of rodent studies and 82% of the dog studies. Our results
are consistent with those of Leliieveld et al. (22) who concluded
for five platinum drugs that studies in dogs provided little new
information to the data obtained in rodents.

Another factor to consider is whether the exposures
(AUCs) at the preclinical and clinical MTDs were equivalent for
these drugs. Perhaps, if AUCs at toxic doses rather than the
administered doses were compared between species (as in Fig.
1), a different pattern of accuracy may have been observed as
Collins et al. (23) have reported for three platinum anticancer
agents. Such an analysis was precluded for the entire dataset,
homeward, because plasma levels of ultrafilterable platinum were
not available in more than one species for most of these drugs.

Several approaches have been proposed to optimize the
efficiency of Phase I testing of oncology drugs. Simon et al. (24)
recently published an analysis that supported the use of a dose-
doubling escalation scheme and single-patient cohorts to more
rapidly define the MTD with fewer patients. The modified
continual reassessment (25) and pharmacokinetically guided
(26, 27) dose-escalation methods also have been proposed to
quickly escalate to the MTD. Alternatively, the time and pa-
tients needed to define the MTD could be minimized by simply
beginning trials at higher doses (28, 29). The data for these
platinum drugs show that starting doses could have been up to
three times higher without compromising patient safety. If start-
ing doses were determined from one-third the mouse or rat LD_{10}
values, then up to four fewer hypothetical dose levels would
have been needed in the initial Phase I trial using the standard
escalation approach (modified Fibonacci). Whether higher start-
ing doses are also possible for other oncology drug classes
remains to be determined.

In summary, we conclude that dogs did not add any par-
ticular value to the preclinical testing of these platinum antican-
cer drugs. Mouse or rats revealed potential toxicities as fre-
quently as dogs. Safe and efficient starting doses were predicted
by both rodents and dogs when using current safety factors
(one-tenth for rodents and one-sixth for dogs) and assuming a
modified Fibonacci dose-escalation scheme. Equally safe and
efficient starting doses could have been obtained by using
one-third, rather than one-tenth, of the rodent LD_{10} or one-third
rather than one-sixth the dog TDH. On the basis of these
findings, we encourage potential sponsors of new platinum
analogue s to discuss with the Division of Oncology Drug Prod-
ucts rodent-only toxicology testing before submitting an IND to
the agency.

ACKNOWLEDGMENTS

We acknowledge that data for these analyses were supplied by
ASTA Medica (Hackensack, NJ), Bristol-Myers Squibb (Wallingford,
CT), Lederle Laboratories (Philadelphia, PA), the NCI (Bethesda, MD),
Parke-Davis Pharmaceutical Research Division (Ann Arbor, MI), Dr.
Roman Perez-Soler (Houston, TX), and Sanofi Pharmaceuticals
(Malvern, PA). We thank these sponsors for their gracious permission
to publish their data in this format. We also thank Gary Gensinger for
designing the database used to store the collected information.

REFERENCES
D. W., Goheer, M. A., Lee-Ham, D. Y., McGuinn, W. D., Schmidt, W.,
Sun, C. J., and Tripathi, S. C. Regulatory considerations for preclinical
development of anticancer drugs. Cancer Chemother. Pharmacol., 41:
Predictive Value of Preclinical Toxicology Studies for Platinum Anticancer Drugs

Diana L. Clark, Paul A. Andrews, David D. Smith, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/5/5/1161

Cited articles
This article cites 23 articles, 2 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/5/5/1161.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/5/5/1161.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/5/5/1161.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.