










producing breast cancer cells as potential targeted therapy for
metastatic breast cancer.

Although PSA may be a potential target in 30% of breast
cancers, other more highly expressed breast cancer-specific
proteases may ultimately be more appropriate therapeutic tar-
gets. Breast cancer cells do in fact express a variety of proteases.
Examples include cathepsins B, D, and L and the matrix met-
alloproteinases (26–28). The expression of these proteases by
breast cancers may have prognostic significance, but their ex-
pression is not restricted to breast tissue alone. Thus, they are
not likely to be useful in this strategy. Recently, the expression
of two new serine proteases, matriptase (29) and protease M
(30), have been described. The breast tissue specificity of these
two new proteases and degree of expression by malignant breast
epithelial cells has yet to be fully characterized; if differential
expression is found, then these proteases may be potential
candidates for prodrug targeting.

In both the MCF-7 and MDA-MB-468 cells, 1-h treatment
with 100 nM TG concentration was sufficient to produce a 60–80%
decrease in cell numberversuscontrol. However, a decrease in the
clonogenic survival was not detectable in MCF-7 cells until 24 h of
exposure. Previously, Furuyaet al.(3) demonstrated that TG could
cause growth-arrest of rapidly proliferating prostate cancer cell
lines. In addition, Linet al.(9) demonstrated that when using the rat

prostate cancer cell line AT3–1, TG induced growth-arrest within
the first 24 h of TG exposure. In this study, TG treatment resulted
in rapid increase in expression of a gene associated with growth-
arrest and DNAdamage (gadd) calledgadd153(9).gadd 153gene
expression is known to be regulated by elevation in [Ca21]i and Lin
et al.demonstrated thatgadd153mRNA levels increased after 1 h
of TG treatment (9). More than 24 h of exposure, however, were
needed to irreversibly commit AT3–1 cells to undergo DNA frag-
mentation and subsequent cellular fragmentation into apoptotic
bodies (9).

In the present study, a decrease in MCF-7 cell number
relative to control cells was also observed with short-term
exposure to TG (i.e.,60% after 1 h and 90% after 24 h of
exposure to 100 nM TG; data not shown). These short exposure
times, however, were not sufficient to irreversibly commit
MCF-7 cells to undergo apoptosis, as evidenced by the lack of
significant loss of clonogenic ability in cells exposed to TG for
less than 24 h. These results emphasize the pitfalls of using
growth inhibition as the end point in assessing drug toxicity,
because such analysis does not differentiate cytostatic from
cytotoxic effects. In addition, these results provide important

Fig. 5 DNA fragmentation resulting from TG exposure of MCF-7 and
MDA-MB-468 cells.A, breast cancer cells were incubated in the pres-
ence or absence of TG (100 nM) for 48 h, then analyzed by field
inversion gel electrophoresis to assess HMW DNA fragmentation.Lane
1, untreated cells at time zero;Lane 2, untreated cells at 48 h;Lane 3,
is treated cells at 48 h. Thenumbersat left, the position ofa HindIII
markers.B, oligonucleosomal DNA fragmentation in the cell lines
treated with TG as described above.Lanes 1and8, 123-bp DNA ladder
marker; Lanes 2and 5, untreated cells at time zero for MCF-7 and
MDA-MB-468 cells, respectively;Lanes 3and6, untreated MCF-7 and
MDA-MB-468 cells, respectively, at 48 h;Lanes 4and 7, TG-treated
MCF-7 and MDA-MB-468 cells, respectively, at 48 h.

Fig. 6 Percentage of DNA fragmentation during continuous exposure to
100 nM TG or vehicle control over a 120-h exposure period.A, MCF-7;B,
MDA-MD-468. f , TG-treated cells;F , vehicle-treated controls.
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information about the kinetics of TG- induced cell death. The
data suggest that prolonged exposure of the target cells to TG
will be necessary for the TG-peptide prodrug therapy to be
effective. Therefore, prodrug administration by continuous in-
fusion may prove to be the preferred method of drug delivery.

In this study,;75% of cells underwent this delayed mi-
cromolar rise in [Ca21]i by 36 h of exposure to 1mM TG. This
delayed secondary rise in [Ca21]i observed in TG-treated
MCF-7 cells temporally precedes the onset of apoptotic mor-
phological changes and DNA fragmentation and the loss of
clonogenic ability. These findings suggest a causal relationship
between the delayed rise in [Ca21]i and the activation of the
apoptotic process. In addition, these studies confirm the findings
of Tombalet al. (4) and demonstrate that the delayed [Ca21]i
rise after TG exposure is not prostate cell-specific but, instead,
may be generalizable to multiple cell types. Tombalet al.
describe similar delayed [Ca21]i elevation in prostate cancer
cells after exposure to such diverse agents as 5-fluorouracil,
ionizing radiation, doxorubicin, or transforming growth factor
b-1 (4). Additional studies are needed to determine whether
similar [Ca21]i changes are seen in breast cancer cells after
exposure to cytotoxic agents. Studies are currently underway to
understand the biochemical and epigenetic changes underlying
these [Ca21]i changes to determine whether these late [Ca21]i
alterations are critical in the reversible “triggering” or signaling
phase of apoptosis or are merely an additional component of the
irreversible, “killing” or execution phase.
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