Membrane Transport of Chemotherapeutics and Drug Resistance: Beyond the ABC Family of Exporters to the Role of Carrier-mediated Processes

I. David Goldman
Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461

Chemotherapeutic agents almost invariably require, as a prerequisite for activity, the ability to traverse the tumor cell membrane to interact with, and perturb the activity of, intracellular targets. Transport often precedes the interaction between drugs and intracellular enzymes and may regulate the rate and extent of metabolism to cytotoxic or cytostatic derivatives that achieve the pharmacological effect. Lipophilic drugs readily enter cells by passive diffusion. However, many drugs are hydrophilic, diffuse through lipid membranes very slowly, and can only enter cells by parasitizing a transporter normally used for physiological substrates. Indeed, even transmembrane flows of lipid-soluble compounds, such as cholesterol and long chain fatty acids, can be augmented by specific membrane transporters (1, 2).

Early in the era of modern cancer chemotherapy, transport across cell membranes by carrier-mediated processes was recognized as an important determinant of drug activity and resistance. This was first characterized for the antifolate, methotrexate, transported by the carrier for reduced folates (3) and subsequently implicated in clinical resistance (4–6). Likewise, phenylalanine mustard activity was shown to be dependent on transport mediated by amino acid carriers (7). But over the past 2 decades, the major focus has been on the ABC superfamily of exporters, in particular, the p-glycoprotein responsible for the multidrug resistance phenotype that produces pleiotropic resistance to multiple classes of agents (anthracyclines, Vinca alkaloids, taxanes, etc.) with very different chemical structures and mechanisms of action (8, 9). These transporters couple the hydrolysis of ATP to the transport of drugs, unidirectionally, out of cells. p-Glycoprotein can capture and eject drug molecules within the lipid membrane and in this way also slow drug influx. The MRP family of ABC exporters, currently represented by nine genetically distinct molecules, overlap, in part, in their substrate specificities with p-glycoprotein. MRPs broaden the classes of agents that can be pumped out of cells to include cisplatin, topoisomerase I inhibitors, arsenite, methotrexate, nucleosides, and nucleobases. MRPs transport some drugs as conjugates of glutathione, glucuronide, or other anions, with the potential for exporting a variety of alkylating and other agents that undergo this detoxification reaction (10, 11). MRPs export some drugs after their entry into cells; therefore, the initial rate of drug uptake is relatively unperturbed, but subsequent accumulation is markedly suppressed.

The article by Mackay et al. in this issue of “Clinical Cancer Research” turns our attention again to the importance of transport carriers, in this case, the nucleoside transporters, members of the Major Facilitator Superfamily, represented in the animal and plant kingdom by hundreds of carriers with extensive homologies across species. Each family of carriers transports specific substrates, such as sugars, amino acids, oligopeptides, organic cations, anions, fatty acids, nucleotides, metals, specific vitamins, or nucleosides (12).

Unlike the MRP and p-glycoprotein families, facilitative carriers achieve the transport of drugs both into and out of cells by processes that are not directly ATP dependent. These carriers can be equilibrating, i.e., facilitate drug uptake without the generation of transmembrane gradients, or they can be concentative by linking the uphill flow of drug into the cell to the downhill flow of another substrate, usually a sodium ion or proton, via the same carrier.

A variety of transport carriers for nucleosides have now been cloned, many by the group at the University of Alberta in Edmonton, Alberta, Canada. There are two broad categories: the equilibrating and the sodium-dependent, concentrative carriers. Other sodium-dependent nucleoside transporters are present in cells but have not, as yet, been cloned. Many of these carriers are transporters of nucleoside antimetabolites (13, 14). Hence, in any tumor cell, there may be more than one nucleoside transport pathway, and the impact of the loss of one carrier on drug activity will depend on the properties and relative activities of the other routes. It is clear from studies in model systems in vitro that loss of nucleoside antimetabolite transport activity can be an important mechanism of resistance to these agents (15, 16). However, the magnitude of loss of drug transport will be limited by the extent to which the tumor cell can tolerate the concurrent loss of transport of the physiological substrate and, for this and other reasons, the extent to which transport is a major determinant of the clinical utility of these drugs is not known.

With the cloning of facilitative carriers, reagents are now becoming available to quantitate expression in human tumors and to correlate these observations with clinical response to antimetabolites. The article by Mackey et al. (15) describes a sensitive immunohistochemical method based on
achieve transport into cells followed by release of the active agent by endogenous enzymes. This approach may have particular potential for enhancing transepithelial transport, in particular intestinal absorption, to make more chemotherapeutic agents bioavailable by the oral route. Transporters that might be harnessed for this purpose could include, among others, the oligopeptide, anionic, or cationic carriers (22–25).

References

Membrane Transport of Chemotherapeutics and Drug Resistance: Beyond the ABC Family of Exporters to the Role of Carrier-mediated Processes

I. David Goldman

Clin Cancer Res 2002;8:4-6.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/8/1/4

Cited articles This article cites 22 articles, 7 of which you can access for free at: http://clincancerres.aacrjournals.org/content/8/1/4.full#ref-list-1

Citing articles This article has been cited by 2 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/8/1/4.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/8/1/4. Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.