Developing and Validating Continuous Genomic Signatures in Randomized Clinical Trials for Predictive Medicine

Shigeyuki Matsui¹, Richard Simon², Pingping Qu³, John D. Shaughnessy Jr⁴,
Bart Barlogie⁴, John Crowley³

¹Department of Data Science, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan; ²Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA; ³Cancer Research And Biostatistics, Seattle, Washington, USA; ⁴The Myeloma Institute for Research and Therapy, University of Arkansas for Medical Science, Little Rock, Arkansas, USA

Running title: Developing and Validating Continuous Genomic Signatures
Keywords: Design and statistical analysis; Genomic signatures; Personalized medicine; Prediction of treatment efficacy; Randomized clinical trials

Send all correspondence to:
Shigeyuki Matsui, Ph.D.
Department of Data Science, The Institute of Statistical Mathematics
10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
Tel.: +81-50-5533-8565, Fax.: +81-42-526-4337
E-mail: smatsui@ism.ac.jp

Conflict of Interest: None to declare
STATEMENT OF TRANSLATIONAL RELEVANCE:

This paper proposes a new framework of design and analysis of phase III randomized clinical trials with embedded DNA microarrays toward personalized or predictive medicine. The proposed framework allows randomized clinical trials to assess treatment efficacy for a patient population in a manner that takes into consideration the heterogeneity in patients’ responsiveness to treatment on survival outcomes, and also predicts patient-level survival curves and treatment effects for individual patients. Through providing the new framework for developing and validating continuous genomic signatures in randomized trials, this paper could contribute to accelerating modern clinical studies toward predictive medicine.

This paper also provides an interesting illustration of the new framework, indicating one of the first successes in exploring predictive signatures that predict treatment efficacy on overall survival using microarray gene expression data in phase III randomized trials. This would encourage clinical investigators to plan for collection of genomic data in designing future randomized clinical trials.
Developing and Validating Continuous Genomic Signatures in Randomized Clinical Trials for Predictive Medicine

Abstract

Purpose:
It is highly challenging to develop reliable diagnostic tests to predict patients’ responsiveness to anti-cancer treatments on clinical endpoints before commencing the definitive phase III randomized trial. Development and validation of genomic signatures in the randomized trial can be a promising solution. Such signatures are required to predict quantitatively the underlying heterogeneity in the magnitude of treatment effects.

Experimental Design:
We propose a framework for developing and validating genomic signatures in randomized trials. Co-development of predictive and prognostic signatures can allow prediction of patient-level survival curves as basic diagnostic tools for treating individual patients.

Results:
We applied our framework to gene expression microarray data from a large-scale randomized trial to determine whether the addition of thalidomide improves survival for patients with multiple myeloma. The results indicated that approximately half of the patients were responsive to thalidomide, and the average improvement in survival for the responsive patients was statistically significant. Cross-validated patient-level
survival curves were developed to predict survival distributions of individual future patients as a function of whether or not they are treated with thalidomide and with regard to their baseline prognostic and predictive signature indices.

Conclusion:

The proposed framework represents an important step towards reliable predictive medicine. It provides an internally validated mechanism for using randomized clinical trials to assess treatment efficacy for a patient population in a manner that takes into consideration the heterogeneity in patients’ responsiveness to treatment. It also provides cross-validated patient-level survival curves that can be used for selecting treatments for future patients.
Introduction

Advances in our understanding of the biology of human cancers have revealed substantial molecular heterogeneity of most conventional histologic diagnoses. In treating cancer patients, this implies that only a subset of treated patients are likely to benefit from a given therapy. This is particularly relevant for molecularly targeted drugs (1-3). As such, there is a substantial growing need for developing a diagnostic test to predict responsiveness of a given treatment for individual patients. To this end, basic research often suggests a panel of candidate predictive markers. Genomic technologies such as microarrays have provided powerful tools for developing genomic signatures (diagnostic tests) based on genome-wide screening. Ideally, the diagnostic test would be developed before initiating the definitive phase III trial that evaluates its effectiveness in distinguishing patients who benefit from a new treatment from those who do not with regard to clinical endpoints such as survival or disease-free survival (4). However, this is difficult because of the complexity of signaling pathways and the inherent difficulty in developing reliable diagnostic tests for clinical endpoints using early phase II data. One approach to address this issue, where a signature to identify responsive patients is unavailable, is to design and analyze the randomized phase III trial in such a way that both developing a genomic signature and testing treatment efficacy based on the developed signature is possible and performed validly. The adaptive signature designs (ASDs) have been proposed for this purpose (5, 6) (see Appendix A).

A genomic signature is usually developed as a composite score integrating the status or values of multiple component genes. Such signatures are continuously valued and represent varying treatment effects among patients (7), reflecting the complexity of disease biology. For developing a diagnostic test, one conventional framework is to
define responsive and non-responsive patients by invoking a thresholding of the continuous score (i.e., patients whose scores are higher or smaller than a threshold are defined as responsive patients) as done in the ASDs (5, 6). However, in this framework, information regarding varying treatment effects among responsive patients would be lost. This can be a concern for plausible situations where treatment selection is affected by many factors, including adverse effects, cost of treatment, and patient’s preference, and thus the size of treatment effect that leads to a patient’s selecting the treatment can differ among patients. This suggests the need for another framework that presents the treatment effect as a function of the continuous genomic signature as a more relevant diagnostic tool for predictive medicine.

In this article, we consider this framework and propose a new methodology for developing and validating genomic signatures in randomized trials, through estimating the underlying profile of the variation of treatment effects as a function of continuous genomic signatures. Based on an estimate of this function, we can provide a cross-validation based test of treatment efficacy for the patient population, and also provide cross-validated patient-level survival curves and treatment effects for use in treatment decisions for individual patients. The motivating example is a phase III trial for assessing whether the addition of thalidomide improves survival for patients with multiple myeloma undergoing high-dose therapy (8-9). Fig. 1 shows a small survival difference between the two treatment arms (thalidomide and no thalidomide) for the subset of patients with genomic data in the trial. This small average effect may reflect the heterogeneity in the effects of thalidomide. By applying our framework to the data of this trial, we can estimate the profile of treatment effects as a function of the genomic signature (with a normalized range from zero to one), as shown in Fig. 2. This allows us
to predict the treatment effect for any individual patient. Based on the estimated treatment effects function, the treatment effect for the overall population and its heterogeneity can be assessed. Furthermore, our framework allows prediction of patient-level survival curves for each treatment for any subset of patients with various degrees of responsiveness to treatments and various degrees of baseline risks, represented by the predictive and prognostic signatures, as shown in Fig. 3. Such prediction curves can serve as a basic diagnostic tool for selecting appropriate treatments for future patients.

Methods

We consider a randomized trial to compare an experimental (E) and control treatment (C). We suppose that pretreatment genomic data for signature development is available for a total of n patients. To be specific, we suppose that pretreatment expression levels for a total of G genes are measured using microarrays for each patient, although other types of genomic data such as single nucleotide polymorphism genotyping, copy number profiling, and proteomic profiling data can be utilized similarly.

There are four components in our framework:

1) Development of a continuous signature score,
2) Estimation of the treatment effects as a function of the developed score,
3) Test of the strong null hypothesis that the treatment has no effect on any patients,
4) Prediction of patient-level survival curves for future patients.

The statistical models and procedures used in all the components must be pre-specified.
Fig. 4 outlines our methodology.

The last component is a step for developing a basic diagnostic tool to aid selecting appropriate treatments for individual future patients, which is different from the purpose of assessing treatment efficacy for a patient population.

Development of Genomic Signature Score

Because the genomic signature is to predict treatment effects for individual patients, we consider a framework of prediction analysis and apply complete K-fold cross-validation (CV) as in the cross-validated adaptive signature design because it is more efficient than the split-sample approach (6) (see Appendix A). In the K-fold CV, the trial population is split into K roughly equal-sized parts. Patient allocation into the K parts must be prospectively defined. For the k-th part, a genomic signature is developed using the data from the other $K - 1$ parts as a training set, and it is applied to the k-th part as a test set ($k = 1, \ldots, K$). In each fold of CV, the development of the genomic signature is typically composed of selection of predictive gene features from scratch and building of a signature scoring using the selected gene features for the training set (see Appendix B). Without loss of generality, we suppose that the signature score is developed such that, for a patient with a low value of the developed score, the survival probability when receiving E is predicted to be higher than that when receiving C; as such, this patient is predicted to be responsive to E. A large variety of algorithms for developing such scores could be envisaged. The compound covariates predictor is one of the simple, but effective algorithms for high-dimensional genomic data (see Appendix B). After developing a signature scoring function using the training set, we apply it to compute predicted scores for all patients in the test set (denoted by U_i in
Appendix B). The value of the predicted score for each patient in the test set is normalized as a quantile (or percentile) value based on the score distribution in the training set.

In each fold of the CV, it is critical that all aspects of the signature development, including selection of gene features, are re-performed (10, 11). When selection of gene features and/or prediction models to develop the signature are optimized based on cross-validated predictive accuracy, the optimization process should be included in the K-fold CV with application of a nested inner loop of K-fold CV (12, 13).

After completion of the K-fold CV, we have the predicted (quantile) scores for all n patients. We denote the score for patient i as \(S_i \in (0, 1) \) (i = 1, …, n). Note that, because \(S_i \) is a quantile measure, it is essentially continuously valued. Again, for patients with lower values of \(S_i \), the survival probabilities when receiving E are predicted to be higher than those when receiving C.

Estimation of the treatment effects function

We estimate the treatment effects as a function of \(S_i \), \(\Psi(s) \) say. As a basic measure of treatment effects, we consider a logarithm of the hazard ratio between the two treatment arms under the proportional hazards assumption that the hazard ratio is constant over time. Specifically, for a patient with the score value \(S = s \),

\[
\Psi(s) = \text{(the log hazard for a patient with } S = s \text{ when receiving E)} \nonumber \\
- \text{(the log hazard for a patient with } S = s \text{ when receiving C)}
\]

represents the treatment effect for that patient. We assume the multivariate Cox proportional hazards model,
where \(r_i \) is the treatment assignment indicator such that \(r_i = 1 \) if patient \(i \) is assigned to treatment E and \(r_i = 0 \) otherwise. Here the functions \(f_2 \) and \(f_3 \) capture the main effects of \(S \) and the interactions between \(S \) and \(r \), respectively. These effects can be non-linear, but should be monotonic in \(S \), because the score \(S \) has been developed such that its lower value represents greater responsiveness to E, on the basis of commonly used linear models in selection of gene features and development of the signature score \(S \) (See Appendix B). One simple specification to have monotonic effects for \(S \) is to use the fractional polynomials (14) (see Appendix C). The model \([2]\) is fitted by maximum (partial) likelihood. Under the model \([2]\), the treatment effects function \(\Psi \) will be expressed as,

\[
\Psi(s_i) = \beta_1 + f_3(s_i) \quad [3]
\]

Under the specification of monotonic effects for the interaction \(f_3 \), the estimated function, \(\hat{\Psi} \), will also be monotone. In particular, if the developed signature score \(S \) is truly effective in predicting the effect of E, a non-decreasing shape of \(\hat{\Psi} \) is expected for increasing \(S \), such that lower values of \(s \) are linked to larger negative values of \(\Psi(s) \), i.e., greater responsiveness to E. If the shape of \(\hat{\Psi}(s) \) is decreasing for increasing \(s \), contrary to the intended increasing shape of \(\hat{\Psi}(s) \), it indicates that no statistical evidence is obtained from the use of the genomic signature in assessing treatment efficacy. For this case, we remove the terms including the genomic signature from the model and re-fit the reduced model with only the main effect of \(r_i \). Under the reduced model, we have \(\Psi(s_i) = \beta_1 \).

Test of treatment effects
We can perform a test of treatment efficacy for a patient population based on the estimated treatment effects function $\hat{\Psi}$. Because our models incorporate varying treatment effects on individual patients, it is natural to consider the strong null hypothesis, H_0, that the treatment has no effect on any patients. Under H_0, the null distribution of $\hat{\Psi}$ and p-values can be obtained by a permutation method that randomly permutes treatment labels. For permutation datasets, the entire CV procedure, including the signature development and the estimation of Ψ, is repeated to obtain a null distribution of $\hat{\Psi}$. We propose to use an average absolute effect size over the entire patient population as the test statistic (see Appendix D). It corresponds to a two-sided alternative hypothesis to detect treatment effects in both directions where the treatment E (C) is superior to C (E). Another approach is, like in the second stage of the ASDs (5, 6) (see Appendix A), to test treatment effects for a subset of patients with $\hat{\Psi}_{(s)} < 0$, who are predicted to be responsive to E. We can consider an average treatment effect over the responsive patients as the test statistic for a one-sided test to detect treatment effects in the direction where the treatment E is superior to C (see Appendix D).

Prediction of patient-level survival curves

Although the estimation of the treatment effects function, $\Psi(s)$, provides direct information regarding the sizes of treatment effects for individual patients in terms of the (logarithm of) hazard ratio, information regarding the survival curves when individual patients receive either one of the two treatments would be more relevant. The patient-level survival curves can be predicted on the basis of the estimates of the baseline hazard function and regression coefficients by fitting the multivariate Cox proportional hazards model [2]. However, this model, which can work well for
estimating the treatment effects function Ψ, may not be so accurate in predicting the patient-level survival curves because it does not incorporate information about risk or prognostic factors. We therefore consider the extension of the model [2],

$$h_i(t \mid r_i, s_i) = h_0(t) \exp \{ \beta_1 r_i + f_3(s_i) + r_i f_3(s_i) + f_4(w_i) \} \tag{4}$$

where the function f_4 represents an effect of a prognostic index w_i. Note that, under the model [4], we have the same form of the treatment effects function [3] with that under the model [2], but the effects β_1 and f_3 are now interpreted with the use of the prognostic index w (or after adjustment for the prognostic term f_4).

The prognostic index, w, can be established based on clinical prognostic factors. However, recent prognostic studies have demonstrated improvement of the accuracy of prognostic prediction by incorporating genomic signatures (15-17). Because large-scale phase III trials with pretreatment genomic data also provide a precious chance for developing reliable prognostic signatures, in addition to reliable predictive signatures, co-development of them would be warranted. Our methodology can be easily extended in this direction. Within the K-fold CV, we develop a prognostic signature score, independently of developing the predictive signature score, S, through correlating genomic data with survival outcomes without reference to treatment assignment. An algorithm similar to that for developing the predictive signature is given in Appendix B. At each step of the K-fold CV, we can fit a multivariate Cox model with the developed genomic signature score and clinical prognostic factors as covariates to obtain a composite prognostic signature. A quantile score can also be developed for the prognostic signature. Then, the developed (quantile) prognostic score is used for w in the model [4].

Based on the estimates under the model [4], for patient i with (s_i, w_i), we predict a
patient-level survival curve or survival rate at a given time point for each treatment. We
then compare the predicted survival curve when receiving E and that when receiving C
to assess the benefit of receiving E for that patient.

Finally, we regard the entire n patients in the clinical trial as a training set and
apply the entire procedure. That is, we develop predictive and prognostic scoring
functions and compute scores for all n patients. When feature selection and/or
prediction models are optimized in the prior K-fold CV, we invoke a new session of
K-fold CV for n patients to determine optimal values of the tuning parameters using the
same optimization procedure, and then compute scores at these values for n patients.
The empirical distributions of those scores serve as reference distributions. For any new
patient, the scoring functions are used to compute predictive and prognostic scores
which are then normalized using the reference distributions. For the new patient, we
then assess the expected treatment effect by plugging these values into the estimated
treatment effects function, $\hat{\Psi}$, obtained in the cross-validated prediction analysis. From
[4] one can also compute the predicted survival curves for the new patient under each
treatment based on the cross-validated prediction analysis.

Results

A large-scale randomized phase III trial was conducted to assess whether the
addition of thalidomide, which has activity against advanced and refractory multiple
myeloma, improves survival in the up-front management of patients with multiple
myeloma undergoing melphalan-based tandem transplantation (8, 9). Despite
significantly higher complete response rate and superior event-free survival among
patients randomized to thalidomide, compared with the control patients with no
thalidomide, overall survival (OS) was similar between treatment groups at the time of first publication, with a median follow-up of 42 months (8), although, with longer follow-up of 72 months, a tendency of long-term effect of thalidomide on OS was observed (9). As another unique feature of this phase III trial, pretreatment RNA from highly purified plasma cells was applied to Affymetrix U133Plus2.0 microarrays for 351 patients, out of 668 randomized patients. Because the efficacy of thalidomide on OS has been relatively uncertain, we performed a predictive analysis for OS using the data with at a median follow-up of 72 months for 351 patients with microarray gene expression data. Fig. 1 shows an OS curve for 351 patients by treatment arm (175 with thalidomide and 176 with no thalidomide (control)).

For each of 54,675 gene features on the microarray, we standardized gene expression levels after normalization to have mean zero and standard deviation one across all 351 patients. We first developed the predictive signature score, S, and the prognostic signature score, W, using a 5-fold CV. For the training set, we screened predictive genes using the significance level of 0.001 for a score test for no interaction between the gene feature and treatment and developed a compound covariates predictor (see Appendix B). Similarly, but independently, we screened prognostic genes using the significance level of 0.001 for a score test for no association of the gene feature and OS developed a compound covariates predictor (see Appendix B). We then obtained the predicted (quantile) signature scores S and W for the test set. After the completion of the 5-fold CV, we had obtained the predicted values of these scores for all 351 patients.

We fit the multivariate Cox proportional hazards model with both S and W in [4] for the entire patient cohort. We specified linear terms for the main effects of S and W, such that $f_2(s_i) = \beta_2 s_i$ and $f_4(w_i) = \beta_4 w_i$, but the fractional polynomials with one term
(FP1) for the interaction of R and S, $f_3(s)$ (See Appendix C). The results were similar for the fractional polynomials with two terms (FP2). The estimated treatment effects function, $\hat{\Psi}(s)$, is provided in Fig. 2. $\hat{\Psi}(s) < 0$ represents thalidomide’s effects that prolong OS. The estimates $\hat{\Psi}(s)$ for $0 \leq s \leq 1$ represent the underlying smooth function regarding varying treatment effects for the whole range of the score S (i.e., the entire patient population). For approximately the half of patients with lower values of S, thalidomide is expected to prolong OS by varying degrees. On the other hand, for the rest of the patients with larger values of S, it could have small adverse effects on OS.

We performed a test of treatment efficacy for the subset of the patient population predicted to benefit from thalidomide based on $\hat{\Psi}(s)$. Because the interest in this randomized trial was to assess improvement in survival by adding thalidomide for patients with high-dose therapies, compared with the control arm with no thalidomide, it is reasonable to test treatment efficacy for a subset of patients who are considered to be responsive to thalidomide using the one-sided test statistic (see [A4] in Appendix D). The observed value of the test statistic was -0.47 in log hazard ratio (0.62 in hazard ratio). The p-value obtained from 2,000 permutations was 0.019, which is significant if our test is employed for a significance level 2% at the second stage of cross-validated adaptive signature design (6) (Appendix A). For reference, the permutation-based p-value for the observed two-sided test statistic, 0.35 (see [A3] in Appendix D), was 0.038.

Based on the estimates obtained from fitting the model [4], we predicted patient-level survival rates for patients with $S = 0.1, 0.5,$ or 0.9 and $W = 0.1, 0.5,$ or 0.9. Again, lower values of S represent larger effects of prolonging OS by receiving thalidomide. Lower values of W represent higher survival rates (better prognosis). Fig. 3
shows the predicted survival curves when receiving either of the two treatments (thalidomide and no thalidomide) for four combinations with \((S, W) = (0.1, 0.1), (0.1, 0.9), (0.5, 0.1), \) and \((0.5, 0.9)\). Table 1 summarizes the predicted 5-year survival rates with thalidomide and no thalidomide and their difference for the all combinations. Generally, even for the same level of the predictive score, \(S\), the effect size of thalidomide was larger (larger absolute difference in the predicted survival rate under each treatment) for patients with poor prognosis (larger \(W\)). For example, for patients with \(S = 0.1\), the difference in the predicted survival rate was 17.9% for \(W = 0.1\), while it was 27.8% for \(W = 0.9\) (see also Fig. 3a and b).

Finally, we applied the procedures for selecting genes and developing signature scoring functions to the entire 351 patients. 81 and 662 genes with no overlap were selected using the significance level of 0.001 for developing the predictive and prognostic signature scoring functions, respectively. The empirical distributions of those scores will serve as reference distributions for predicting patient-level survival curves under each treatment for any new patient on the basis of the fitted model of [4] obtained in the cross-validated prediction analysis.

For treatment selection, it would be reasonable to withhold thalidomide for approximately the half of patients with \(\hat{\Psi}(s) > 0\) because no improvement in survival is expected by receiving thalidomide. For the rest of patients, the decision of whether to use thalidomide would take into consideration the estimated sizes of thalidomide’s effects for individual patients as well as other factors such as safety issues, including severe peripheral neuropathy and deep-vein thrombosis (8).
Discussion

Although development of diagnostic tests to predict patients’ responsiveness to anti-cancer therapies on clinical endpoints is particularly important, it is generally difficult to develop such tests in early clinical trials. If a signature to identify responsive patients cannot be developed in early clinical trials, the use of genomic data from large-scale randomized clinical trials can be a useful approach for developing reliable diagnostic tests. The adaptive signature designs (5, 6) have provided a new framework that allows this, while strictly controlling the false positive rate in assessing treatment efficacy for the entire patients or a subset of responsive patients. In this article, we have considered another framework designed to estimate treatment effects quantitatively over the entire patient population, rather than qualitatively classifying patients as in or not in a responsive subset.

To achieve this framework, we have proposed a methodology to develop and validate continuous genomic signatures within a single randomized clinical trial. These signatures can be used for prospectively assessing treatment efficacy for the entire patient population or a subset of responsive patients and also for predicting patient-level survival curves for treating individual patients. We have provided an implementation of this approach with the use of relatively simple, but effective statistical procedures for developing genomic signatures. While there are usually multiple signature development methods (both in feature selection and prediction algorithm) with comparative predictive accuracy (18), further research on the application of more complex alternatives is warranted.

Our methodology may be used on a stand-alone basis for the analysis or as the second stage of the adaptive signature designs (5, 6). In the former circumstance, the
test of the strong null hypothesis for the overall population at a two-sided 0.05 significance level controls the study-wise type I error. The hypothesis of no heterogeneity in treatment effect can be tested using a test statistic, such as those for testing the interaction term in the multivariate Cox model in [2] or [4] and the variance of the cross-validated treatment effects ($\text{var}(\hat{\Psi}(s_i))$), and evaluating it's distribution under permutations of the genomic covariate vectors. We plan to study this test in more detail subsequently.

Our methodology can be used as the second stage of the ASDs when the overall treatment effect is not significant. The one-sided test (see [A4] in Appendix D) is similar to the test of the average treatment effect for a subset of responsive patients proposed in the ASDs (5, 6). These one-sided tests would be relevant typically when developing a new molecularly targeted agent, or more generally, when assessing improvement in survival by prescribing the experimental treatment, as in the multiple myeloma example. Our methodology also provides a two-sided test for the entire patient population (see [A3] in Appendix D). This could be relevant when comparing two competitive treatments (or treatment regimens) to establish standard therapy. In such settings, the overall treatment effect for the entire population can be small (and thus not detected) due to combining reversed effects from distinct subsets of responsive patients to either one of the two treatments. The two-sided test would be particularly effective for such situations. This would indicate a direct use of this test as the primary analysis without performing the classical test for the overall treatment effect. There are many methodological issues, including sample size determination, that can provide interesting directions for further research.

For licensing studies sponsored by pharmaceutical companies, although the
proposed method can detect treatment effects for a subset of responsive patients, uncertainty in identifying the responsive subset based on $\hat{\Psi}(s)$ (due to possible model misspecification and random variation) may limit confidence in labeling of the new treatment for the identified patient subset (i.e., $\hat{\Psi}(s) < 0$). The proposed method, however, can provide useful information for designing a second confirmatory trial, possibly with a targeted or enrichment design with small sample sizes, especially when there is no overall treatment effect for the entire population.

Our methodology can also be useful even if the overall average treatment effect is significant. In order to avoid over-treatment of the population, it is useful to identify patient subsets who receive large, small or no benefits from the treatment and to predict patient-level survival curves to aid selecting treatment for individual patients. Provided that some conditions are met (19), our methodology could also be applied to genomic data from past randomized trials to analyze the heterogeneity in treatment effects over the study population and to develop diagnostic tools for established treatments.

Confidence intervals for the treatment effects function and patient-level survival curves are particularly important both in assessing the heterogeneity of treatment effects across patients and in developing diagnostic tools for individual patients. Construction of these intervals via resampling methods is another subject for future research.

Lastly, for utilizing our framework, it is essential to plan for collection of genomic data in designing randomized clinical trials. The rapid development of high-throughput technologies, which has reduced the cost of microarrays and exome sequencing, and infrastructure development for genomic analysis in the context of clinical studies have allowed collection of large-scale genomic data in randomized trials, such as the illustrative example of the multiple myeloma trial. Through providing the new
framework for developing and validating continuous genomic signatures in randomized trials, we hope this article could contribute to accelerating modern clinical studies toward predictive medicine.
Appendix A: Adaptive Signature Designs (ASDs)

These designs first test the overall treatment effects for the entire study population using a significant level α_1 (e.g., 0.03), out of the overall type I error rate 0.05. If it is not significant, these designs proceed to the second stage. A genomic classifier is developed for a portion of samples (training set) and the treatment efficacy for the patient subset classified as “responsive” to the new treatment is tested at significance level $0.05 - \alpha_1$ (e.g., 0.02) for the rest samples (test set). The second stage can be based on split-sample (5) or cross-validation (6). The latter, called the cross-validated adaptive signature design, is expected to be more efficient because it maximizes the portion of samples contributing to the signature development (6).

Appendix B: Algorithms for Developing Genomic Signatures

Selection of predictive gene features

A test of interaction between treatment and gene features is performed for each gene feature separately, and a set of the most significant gene features is selected for the training set. Specifically, for a particular gene feature, a standard multivariate Cox proportional hazards model is commonly assumed:

$$h_i(t) = h_0(t) \exp \{\psi_1 r_i + \psi_2 x_i + \psi_3 r_i x_i\}$$ \hspace{1cm} [A1]

where r_i the treatment assignment indicator such that $r_i = 1$ if patient i is assigned to treatment E and $r_i = 0$ otherwise, x_i the expression level of the gene feature, and the product $r_i x_i$ representing an interaction term of treatment and gene feature ($i = 1, \ldots, n$). The parameters ψs are the regression parameters and $h_0(t)$ is the baseline hazard function. We calculate a test statistic for testing a null interaction effect, $\psi_3 = 0$, such as a score or Wald type of statistics. A standardized test statistic, Z, approximately follows...
the standard normal distribution under the null interaction effect. Without loss of
generality, we suppose that a negative (positive) \(Z \) represents such a gene that
overexpression is linked to a reduction (elevation) of risk of developing the event by
receiving \(E \). The significance level of this test for gene selection can be regarded as a
tuning parameter that is determined to maximize cross-validated prediction partial
likelihood. A simpler approach is using an arbitrary, fixed significance level, such as
0.001 (20).

Compound covariates predictor for developing genomic signatures

To cope with the interaction effects of a number of predictive gene features, we
consider a composite score. Specifically, for patient \(i \),

\[
U_i = \sum_{g \in \Omega} z_{ig} x_{ig}
\]

[A2]

where \(\Omega \) is the set of selected genes in the step 1 and \(z_g \) is a standardized test statistic of
the interaction test for gene \(g \) obtained from the training set. This is the compound
covariates predictor (21-23). If the patient \(i \) belongs to the test set, the value of score \(U_i \)
is regarded as a predicted value. Smaller values of \(U_i \) correspond to greater chance of
benefitting from \(E \) relative to \(C \).

Development of Prognostic Signatures

Screening of prognostic genes is typically based on a score (logrank) test or Wald
test derived from a univariate Cox regression that correlates a single gene with survival
outcome (24), without regard to treatment assignment. The test is predicated on the
definition of prognostic genes that have similar effects on survival, irrespective of
which treatment is received. There are a large variety of algorithms for developing
prognostic signatures (24). Again, the compound covariates predictor is one of simple, but effective algorithms for high-dimensional genomic data, where the standardized test statistic from a univariate Cox regression is used for \(z_g \) in [A2] for a set of selected prognostic genes \(\Omega \).

Appendix C: Fractional Polynomials

One term fractional polynomials (FP) functions (FP1), \(f_3(s) = \beta_3 s^a \) (\(a \in \{-2, -1, -0.5, 0, 0.5, 1, 2, 3\} \) with \(a = 0 \) identical to \(\log(s) \), the natural logarithm of \(s \)) are always monotonic. The two term FP (FP2) functions, \(f_3(s) = \beta_{31}s^{a_1} + \beta_{32}s^{a_2} \), with different powers \(a_1 \neq a_2 \) is monotonic when \(\text{sign}(\beta_{31}\beta_{32}) \text{sign}(a_2) = \text{sign}(a_1) \) (14). Because of an acute change in the FP functions when \(s \) is close to 0 for \(a \leq 0 \), we shall add a constant 1 to \(S \). For example, \(f_3(s) = \beta_3(s + 1)^a \) for FP1.

Appendix D: Test Statistics and P-values

As a test statistic for a two-sided alternative hypothesis to detect treatment effects in both directions where the treatment E (C) is superior to C (E), we propose to use the following test statistic,

\[
T = \int_0^\infty |\hat{\Psi}(s)| \, ds ,
\]

[A3]

which represents a summation of absolute effect sizes, or equivalently, an average absolute effect size over the entire patient population. Another approach is, like in the second stage of the ASDs (5, 6) (see Appendix A), to test treatment effects for a subset of patients with \(\hat{\Psi}(s) < 0 \), who are predicted to be responsive to E. Let \(I \) be a collection of \(s \) that satisfies \(\hat{\Psi}(s) < 0 \), which represents a group of responsive patients to E, and \(L \) be the size or length of \(I \), which represents the size of the group of responsive patients.
Then, as the counterpart of T, we can consider a one-sided test statistic,

$$T_R = \frac{1}{L} \int_{\alpha_{L}} \hat{\Psi}(s) ds,$$ \hfill [A4]

which represents an average treatment effect over the responsive patients.

In calculating p-values of the two-sided statistic T using the permutation method, we count the number of permutations with the values of T are equal or larger than the observed value of T. For the one-sided statistic T_R, we count the number of permutations with the values of T_R are equal or less than the observed value of T_R.

Acknowledgements

The authors would like to acknowledge the contributions of the reviewers to improving an earlier draft of the manuscript.

References

Figure legends

Fig. 1. Survival curves for all 351 patients with genomic data in the randomized trial for multiple myeloma.

Fig. 2. The estimated treatment effects functions for the predicted signature score, S, in terms of logarithm of hazard ratio, i.e., $\hat{\Psi}$ (panel a) and hazard ratio, i.e., $\exp(\hat{\Psi})$ (panel b). Here, $\hat{\Psi}(s) = 0.79 - 2.02(s + 1)^{-2}$ derived from the fitted linear predictor, $0.79r - 0.69s - 2.02\{r(s+1)\}^{-2} + 1.72w$ for the model [4].

Fig. 3. The predicted survival curves when receiving thalidomide (solid curves) and no thalidomide (dashed curves) for four patients with different values of the predictive score (S) and the prognostic score (W); $(s, w) = (0.1, 0.1), (0.1, 0.9), (0.5, 0.1)$, and $(0.5, 0.9)$ (panels a-d). $s = 0.1 (0.5)$ represents a high (small) responsiveness to thalidomide, while $w = 0.1 (0.9)$ represents a good (poor) prognosis.

Fig. 4. Outline of the proposed methodology.
Fig. 1. Survival curves for all 351 patients with genomic data in the randomized trial for multiple myeloma.
Fig. 2. The estimated treatment effects functions for the predicted signature score, \(S \), in terms of logarithm of hazard ratio, i.e., \(\hat{\Psi} \) (panel a) and hazard ratio, i.e., \(\exp(\hat{\Psi}) \) (panel b). Here, \(\hat{\Psi}(s) = 0.79 - 2.02(s + 1)^{-2} \) derived from the fitted linear predictor, \(0.79r - 0.69s - 2.02\{r(s+1)\}^{-2} + 1.72w \) for the model [4].
Fig. 3. The predicted survival curves when receiving thalidomide (solid curves) and no thalidomide (dashed curves) for four patients with different values of the predictive score (S) and the prognostic score (W); (s, w) = (0.1, 0.1), (0.1, 0.9), (0.5, 0.1), and (0.5, 0.9) (panels a-d). $s = 0.1$ (0.5) represents a high (small) responsiveness to thalidomide, while $w = 0.1$ (0.9) represents a good (poor) prognosis.
K-fold Cross-Validation:
Generate predictive and prognostic scoring functions and calculate scores for omitted patients

Cross-validated scores \((s_i, w_i)\) for all \(n\) patients

Fit the proportional hazards (PH) model [4] using the cross-validated scores for all \(n\) patients and obtain an estimate of the treatment effects function \(\Psi\) in [3]

Test Average Treatment Effects Size for Patient Population by Permutations:
Compute test statistic based on the estimate of \(\Psi\) for actual (unpermuted) data and permuted data and obtained permutation \(p\)-value.

Predict Patient-Level Survival Curves and Treatment Effect for New Patient:
Generate predictive and prognostic scoring functions and reference distributions for estimate of \(\Psi\) for actual (unpermuted) data and permuted data and obtained permutation \(p\)-value. For future patient, compute predictive and prognostic scores and plug into the fitted PH model developed in the cross-validated analysis.

Fig. 4. Outline of the proposed methodology.
Table 1. Predicted 5-year survival rates for each treatment.

<table>
<thead>
<tr>
<th>S</th>
<th>W</th>
<th>Survival rate with thalidomide</th>
<th>Survival rate with no thalidomide</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>85.3%</td>
<td>67.4%</td>
<td>17.9%</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>79.5%</td>
<td>56.6%</td>
<td>22.9%</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>71.9%</td>
<td>44.1%</td>
<td>27.8%</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>75.8%</td>
<td>73.8%</td>
<td>2.1%</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>67.1%</td>
<td>64.5%</td>
<td>2.6%</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>56.4%</td>
<td>53.2%</td>
<td>3.1%</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1</td>
<td>73.7%</td>
<td>79.1%</td>
<td>-5.4%</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>64.5%</td>
<td>71.4%</td>
<td>-6.9%</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>53.2%</td>
<td>61.5%</td>
<td>-8.3%</td>
</tr>
</tbody>
</table>
Developing and Validating Continuous Genomic Signatures in Randomized Clinical Trials for Predictive Medicine

Shigeyuki Matsui, Richard Simon, Pingping Qu, et al.

Clin Cancer Res Published OnlineFirst August 27, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-1206

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2012/08/25/1078-0432.CCR-12-1206. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.