NEW STRATEGIES FOR CARCINOMA OF UNKNOWN PRIMARY
THE ROLE OF TISSUE OF ORIGIN MOLECULAR PROFILING

Gauri R. Varadhachary, M.D.

Department of Gastrointestinal Medical Oncology
The University of Texas M. D. Anderson Cancer Center, Houston, Texas

Corresponding author:
Gauri Varadhachary, M.D.
Professor
Department of Gastrointestinal Medical Oncology, Unit 426
The University of Texas M. D. Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030-4009
Tel: (713) 792-2828
Fax: (713) 745-1163
E-mail: gvaradha@mdanderson.org

Running Title: Molecular Profiling for Carcinoma of Unknown Primary

Conflicts of Interest:
Biotheranostics – Scientific Advisory Board
Pathwork Diagnostics – Scientific Advisory Board
Rosetta Genomics – Research funding 2009-2011; no current COI
ABSTRACT:

The taxonomy and management of CUP has matured over the last decade with the use of sophisticated imaging and pathologic tools. In the era of tailored therapeutics, this presents both an opportunity and a challenge. Tissue of origin (ToO) molecular profiling has an important role in the diagnostic armamentarium of CUP cancers and its niche continues to evolve with ongoing prospective studies. Despite the inability to perform direct validation (i.e. primary tumor), the use of the indirect validation methods with immunohistochemistry (IHC), imaging, and treatment response has allowed us to evaluate the performance accuracy of ToO profiling assays in CUP cancers. Despite advances, we struggle with the undifferentiated neoplasms which often remain unclassifiable after an exhaustive use of IHC and ToO profiling assays. Genomic characterization of these and other select CUP cancers using next generation sequencing techniques may reveal actionable biomarkers outside the (tissue specific) cellular framework. Also, going forward, using data from comparative effectiveness research, one could envision using a streamlined, cost-effective algorithm that integrates IHC and ToO molecular profiling in patients with limited (or difficult to access) biopsies and difficult-to-diagnose cancers.
BACKGROUND

CUP classification

Carcinoma of unknown primary (CUP) is a diverse group of cancers with poor prognosis and an unmet research need. The reported incidence of CUP varies with the practice setting, and averages 2% to 4% of all cancers. Not unlike other solid tumors, the classification of CUP continues to evolve.

The last 4 decades encompass several periods. CUP first came to be defined when improved imaging suggested, with some confidence, the absence of a primary tumor. This was followed by diagnostic histopathology and robust immunohistochemistry (IHC), which allowed definition of select CUP subsets. (1-4) The current era of molecular profiling describes tissue of origin (ToO) profiles which assign putative primary sites to CUP cancers. Additionally, robust IHC and profiling together (5-6) inform actionable targets (e.g. Her-2, KRAS, ALK, others).

As the genomic and proteomic characterization of CUP malignancies are refined, the assigned ‘unknown’ designation is being challenged. Furthermore, ambiguity is created by the ‘uncertain primary’ which can present in one of three settings. First, patients who have been diagnosed and treated in the past for a specific known cancer can present with metastatic cancer and an atypical, usually poorly differentiated, pathology which does not match the previously treated primary. This creates the ambiguity around whether it is a recurrence or a new CUP cancer. Second is an unclassifiable cancer, which is usually a poorly differentiated or undifferentiated neoplasm. Last and perhaps the most common of all, is metastatic cholangiocarcinoma in the presence of an intrahepatic lesion(s), masquerading as CUP cancer. An academic CUP program evaluates an assortment of these presentations and each pose a different diagnostic and therapeutic challenge. (Fig.1)
Imaging in the Presence of Sophisticated Pathology

Optimal and focused imaging is critical in the management of a suspected CUP even in the setting of ToO molecular assays. Expensive profiling tests should not compensate for a substandard work up. In the absence of contraindications, a baseline IV contrast CT scan of the chest, abdomen and pelvis is the standard of care in all CUP patients. (7) Several studies have been conducted to determine the value of FDG-PET imaging in detecting occult primary tumors after unsuccessful conventional diagnostic evaluation. Most of the studies consist of a small number of evaluable patients and focus primarily on patients with cervical lymphadenopathy with squamous cell pathology. (8-12) In this group of patients, PET-CT is useful in about a third of patients and helps with search of the primary, radiation planning and surveillance. It is important to note that in the CUP setting, a baseline PET-CT scan may miss a small renal or urothelial primary cancer.

Larger studies to evaluate the utility and cost-effectiveness of PET-CT in CUP are warranted although they can be challenging. There are some practical applications where PET-CT scan may be useful although they have not been studied prospectively - first, in evaluating select CUP patients presenting with solitary metastatic disease who are candidates for definitive loco regional therapy, and second, in patients with osseous predominant CUP. With the latter, a single study may suffice and can replace multiple scans to image response of osseous metastases to therapy.

Framework of ToO Molecular Profiling: Effort in known cancers

Most agree that an accurate diagnosis of the putative primary would support the use of site-specific therapy and impact CUP patients’ prognosis and management. The premise for studying ToO molecular profiling assays in CUP cancers is that, when a large number of genes are examined using tools such as DNA microarray or real-time
quantitative polymerase chain reaction (RT-PCR) assay, metastatic tumors have molecular signatures that match their primary origin. (13)

Ramaswamy and colleagues (14) studied 218 tumor tissues across 14 common tumor types and constructed a predictive support vector machine (SVM) algorithm. This, tested on an independent group of 54 tumors, yielded an overall prediction accuracy of 78% and the accuracy stayed above 70% with fewer than 50 genes. Su and colleagues extracted mRNA from 100 primary carcinomas, 10 common cancers, and then used an Affymetrix (Affymetrix, Inc.) oligonucleotide microarray to identify genes that were differentially expressed. (15) The 110-gene based algorithm was tested against 75 blinded samples and accurately predicted the tumor of origin in over 90% of the cases. Bloom and colleagues (16) combined multiple tumor datasets to obtain a large collection of tumors (21 tumor types) and built a neural network-based classifier with 85% accuracy. Tothill and colleagues (17) constructed a support vector machine (SVM) classifier, demonstrating 89% accuracy using a 13-class model. They also showed the translation of a five-class classifier to a quantitative PCR-based platform and studied a few CUP cancers.

Since a microarray as a tool is complex and time consuming, there was a move toward converting the microarray database to a clinic-ready RT-PCR platform using formalin-fixed, paraffin embedded (FFPE) specimens. Ma and colleagues (18) developed a RT-PCR assay involving 92 genes and used it on FFPE samples. A validation set of 119 FFPE tumor samples from 32 different tumor classes showed an 87% accuracy rate. More recently, a multisite validation study of the same assay was performed using 790 specimens from more than 50 subtypes. The 92-gene assay showed overall sensitivities of 87% for tumor type and 82% for subtype. (19)

Monzon and colleagues (20) described a multicenter validation of a 1,550-gene expression profile for identification of tumor ToO. Four institutions processed 547 frozen specimens representing 15 ToO using oligonucleotide microarrays. The study found overall
sensitivity of 88% and overall specificity of 99%. A validation study for this assay using 462 FFPE specimens maintained an accuracy rate of 89%. (21)

At least two groups have evaluated the role of microRNA in ToO profiling. Ferracin and colleagues (22) identified a 47-miRNA signature representing 10 cancer types (in 40 samples) and reported an accuracy of 100% for primary cancers and 78% for metastases. This signature was applied to an independent published dataset of 170 samples and prediction was found within the first two options (differential) in 86% of the metastasis cases (first prediction was correct in 68% of cases). Rosenwald and colleagues (23) measured expression levels of 48 microRNAs by qRT-PCR, and predicted the ToO among 25 possible classes, corresponding to 17 distinct tissues and organs. The biologically motivated classifier combined the predictions generated by a binary decision tree and K-nearest neighbors (KNN). The classifier was validated on an independent, blinded set of 204 FFPE tumor samples; the test predictions correctly identified the reference diagnosis in 85% of the cases. In 66% of the cases the two algorithm predictions (tree and KNN) agreed on a single-tissue origin, which was identical to the reference diagnosis in 90% of cases. A second-generation assay (24) that identifies 42 tumor types using expression of 64 microRNAs was reported to have an overall assay sensitivity on a validation set of 509 independent samples, of 85%.

Retrospective and Prospective Molecular Profiling Studies: Effort in CUP

The challenge with validating a ToO test for CUP is that, by definition, the diagnosis of the primary cancer cannot be verified. Thus, estimates of ToO test accuracy have depended on indirect metrics or the later appearance of latent primaries.

Performance-based: Over the last several years several groups (22, 25-30) have reported on performance-based studies for CUP. One of the first studies evaluated the feasibility of a 10-gene RT-PCR assay to identify the ToO in CUP patients. (25) The assay was successfully
performed in 104 patients (87%), and a ToO was assigned in 63 patients (61%). The ToO most commonly identified were lung, pancreas and colon; most of these patients had clinical and pathologic features consistent with these diagnoses. Our group performed a microRNA study in 87 patients that quantitated 48 microRNAs and assigned one of 25 tumor diagnoses by using a biologically motivated binary decision tree and K-nearest neighbors (KNN). The assay result was consistent or compatible with the clinicopathologic features in 84% of CUP cases. (28) The second generation assay using 64 microRNAs identifying 42 tumor types has been studied in 52 CUP patients with an 88% concordance with clinicopathologic evaluation. (24)

Greco and colleagues (29) presented a retrospective study which compared the 92-gene assay results to the latent primary cancer diagnosed over the course of patient’s life/treatment. Fifteen of the 20 assay predictions (75%) were correct corresponding to the actual latent primary sites identified after the initial diagnosis of CUP.

Outcomes-based: Hainsworth and colleagues (30) recently published a prospective single arm study evaluating the role of the 92-gene assay to predict the tissue of origin (ToO) and assay-directed site-specific therapy in CUP patients. The authors concluded that the median overall survival (OS) of 12.5 months (95% C.I, 9.1 to 15.4 months) for patients who received assay-directed site specific therapy compares favorably with previous studies using empiric therapy. Patients with more responsive tumor types had a longer survival compared to those with less responsive tumor types. Biliary and urothelial profiles were 33% of the predictions.

Although intriguing, a firm conclusion cannot be drawn from this study. As with many other cancers, the OS in CUP patient receiving empiric therapy has improved over the last decade and similar survivals have been noted in other studies with empiric modern chemotherapy combinations. (31) Further, it is difficult to evaluate the exact role of molecular profiling in any study without the important components, namely, clinicopathologic evaluation. Finally, the challenges of confounding variables including use of subsequent lines of (empiric)
therapy and the heterogeneity of these cancers make it difficult to interpret the survival data in the absence of randomization.

Emerging themes with ToO Molecular Profiling and CUP cancers

CUP researchers are enthusiastic about the ToO profiling technology and several years of study have answered many questions and left some unanswered. (Table 1, Box 1) Even in the absence of direct validation (i.e. primary tumor), the indirect validation metrics using IHC, imaging and treatment response has allowed us to extrapolate the performance accuracy of profiling studies from known to CUP cancers. What remains unclear at the present time is how best to manage substantial discordancy between clinicopathologic features and molecular profiling.

Outcomes based studies using OS as an end point present a challenge. The traditional prospective randomized trial design to evaluate impact on OS is difficult since an adequately powered trial would require more than 500 patients and still run the risk of ambiguous results due to the very heterogeneous presentations of CUP cancers. In practice, profiling assays aid diagnosis where IHC fails and especially helpful when diverse treatment choices are planned based on the differential diagnosis.

Insufficient tumor for mRNA or microRNA retrieval is not an uncommon circumstance especially if exhaustive IHC have been performed and in the setting of limited biopsies and fine needle aspirations (~ 15% in clinical practice). Emerging studies comparing IHC and MP may give way to novel cost-effective algorithms (shown below).

The commercial ToO profiling companies perform their proprietary profiling tests in their Clinical Laboratory Improvement Act (CLIA)-certified, CAP-accredited diagnostic services laboratories. These molecular assays are currently labeled as laboratory developed tests (LDTs) and previously were categorized as in-vitro diagnostic multivariate index assays products (IVD-MIA). One of these assays was FDA cleared as an IVD-MIA.
ToO profiling assays are generally reimbursed by Medicare although major insurance companies have not yet established a formal coverage policy for these tests. The current version of the NCCN guidelines suggests judicious use of profiling on a case by case basis pending outcomes and comparative effectiveness data. (7)

The Institute of Medicine highlighted the need for additional regulation of Laboratory Developed Tests (LDTs) in the era of "-omics"- based research. (32) Current FDA guidance on in-vitro diagnostic devices suggests that an investigational drug exemption (IDE) may be required for an investigational diagnostic procedure that is the basis for a treatment decision. FDA is developing more specific guidance (33) for LDTs after considering input from a broad range of stakeholders.

ON THE HORIZON

Evolving CUP definition – left with the unclassifiable?

As the CUP classification and diagnostic tools continue to develop, CUP academicians may see a shift toward the unclassifiable cancers in their academic practice. My working definition of ‘unclassifiable’ CUP cancers includes tumors where neither comprehensive IHC nor molecular ToO have plausible answers (often referred to as unclassified or undifferentiated neoplasms on the standard pathology and molecular profiling report) or there is a significant unresolvable discrepancy in the clinicopathologic and molecular profiling results.

The ‘unclassifiable’ designation on molecularly profiling does not necessarily reflect on the robustness of the assay but rather on the indistinct genetic signature of these cancers which is unmatched in the profiling training tests. These are perhaps the best candidates for next generation deep sequencing to unravel the biology and actionable targets.

The primary focus of this discussion is determining the CUP ToO to guide selection of a therapy that has been shown to be effective in a class of cancers. However, the other goal of
molecular profiling, shared with tumors of known origin, is using individual tumor data to help guide a personalized cancer therapy. This applies to unclassifiable tumors as well as to those where a ToO has been assigned.

Our group recently used the Sequenom (SQM) Massarray platform in an all-comers CUP population (34) and found that the overall mutational rate in a 25-gene hotspot assay was surprisingly low (18%). No ‘new’ low frequency mutations were found using a panel of mutations involving P13K/AKT pathway, MEK pathway, receptors and downstream effectors. Focusing on CUP subsets and minimizing heterogeneity where possible may provide a higher mutational yield. Mutational profiling and other tumor-specific pathway profiling tools should be evaluated in additional clinical trials, drawing on experience with non-CUP cancers. Currently, as with tumors of known origin, the incremental value of the SQM platform or other genomic tools is not well established. The optimum timing of some types of testing is also not clear (e.g. on presentation vs. progression). An initial focus could be with patients lacking a standard therapeutic option which may include those in the two ‘extremes’ of presentations -- the good prognosis, ‘adenopathy’ dominant, chemo responsive patients who have already received multiple lines of therapy and those with ‘unclassifiable’ tumors where there are no good directed or empiric therapy options.

Molecular Profiling: Oncologist’s or Pathologist’s Domain?

Today, MP assays are typically requested by an oncologist based on a patient’s clinicopathologic presentation (including IHC) and therapy options. Going forward, it is reasonable to ask if MP assays should be used by pathologists as part of their armamentarium of diagnostic tools to diagnose cancers. Studies have reported on the comparative effectiveness of IHC and ToO molecular profiling (35-37) in diagnosing the primary site. Diagnostically challenging metastatic samples (reference diagnosis) were evaluated in prospectively defined, blinded studies. Blinded FFPE sections were sent to pathologists involved with the study and
independently evaluated by either morphology (H&E) and IHC or the ToO assay(s). The primary endpoint was concordance with the reference diagnosis. The authors concluded that MP assay was more accurate than IHC based diagnosis including in patients with poorly differentiated and undifferentiated (non-CUP) samples. In one study, pathologists’ accuracy and confidence increased significantly from H and E to round 1 of IHC stains but not much from additional round of stains. In the other study, in cases requiring > 9 IHC stains, assay performed better than IHC (69% vs. 46% respectively).

Cost effectiveness models with profiling and immunohistochemistry

Over the last few years, the primary focus of the ToO molecular profiling field has been to evaluate its accuracy and reliability. Attempts to demonstrate independent value of ToO profiling by measuring its impact on management decisions or survival have been less than convincing in the face of challenges relating to trial design and CUP heterogeneity.

We now have increasing evidence that ToO profiling can provide an acceptable level accuracy in some settings and has a high degree of concordance with IHC, especially with well-defined tumors. The next step in the evolution of this tool is to integrate its use into the broader diagnostic armamentarium used in CUP, defining its role vis-à-vis other tools such as IHC, rather than viewing it as an add-on tool after other investigations are complete. Such an approach would also meet the needs of our current health care economic environment (and bundled payments).

One could envision using an algorithm that integrates IHC and ToO molecular profiling to maximize accuracy and minimize costs, especially in patients with limited tissue, difficult to access tumors, malignant effusions, and poorly differentiated / undifferentiated neoplasms. In such a model, the timing and role for ToO profiling would need to be defined. E.g. Pathologists could use a profiling assay earlier in their tissue diagnosis; ideally after the first round of pertinent 5-6 IHC stains, such as in the algorithm presented in Fig.2. An algorithm such as this
would continue to evolve as additional experience was gained with ToO profiling and the trade-off in costs and accuracy became clearer.

To be successful, such an effort would require a collaborative approach from all the relevant stakeholders including practitioners and the relevant agencies and industry groups including the Food and Drug Administration, the Centers for Medicare & Medicaid Services and College of American Pathologists. It may also require rationalization of the cost structure involving molecular profiling assays and IHC costs (professional and technical fees). Our ultimate goal should be to provide a cost and clinically effective algorithm that leverages genomics and proteomics techniques to deliver validated new approaches to our patients. The emergence of new tools provides an occasion to greatly strengthen our diagnostics and management approaches in CUP and we should seize this opportunity by being innovative in our thinking.

FIGURE LEGENDS

Fig.1: CUP Classification. MP – molecular profiling, IHC – immunohistochemistry

Fig.2: Algorithm that integrates IHC and ToO molecular profiling in (poorly differentiated or undifferentiated) difficult-to-diagnose cancers

REFERENCES

33. FDA/CDRH Public Meeting: Oversight of Laboratory Developed Tests (LDTs), July 19-20, 2010. Available from: http://www.fda.gov/MedicalDevices/NewsEvents/WorkshopsConferences

Table 1: Limitations of Pathologic tools used for CUP diagnosis

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Immunohistochemistry (IHC) performance</th>
<th>Tissue of Origin (ToO) Profiling performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Validation</td>
<td>Difficult in the absence of a primary (ToO validates IHC)</td>
<td>Difficult in the absence of a primary (IHC validates ToO)</td>
</tr>
<tr>
<td>Cost</td>
<td>Moderate (when overuse avoided)</td>
<td>Higher than IHC but may drop over time</td>
</tr>
<tr>
<td>Sensitivity and Specificity</td>
<td>Moderate – depends on IHC antibodies and execution</td>
<td>Moderate to high for cancers in training set</td>
</tr>
<tr>
<td>Intra / inter tumoral heterogeneity</td>
<td>Not well studied in CUP</td>
<td>Not well studied in CUP</td>
</tr>
<tr>
<td>Clinical impact / utility</td>
<td>Forms the backbone of CUP diagnosis; tiered approach preferred albeit poorly implemented</td>
<td>Role is evolving. No strategy in place if results discordant with clinicopathologic diagnosis Prospective randomized studies using OS as endpoint are a challenge</td>
</tr>
<tr>
<td>Execution challenges</td>
<td>Intra and inter operator variability; factors affecting tissue antigenicity and stain interpretation</td>
<td>Requires special molecular pathology expertise</td>
</tr>
<tr>
<td>Diagnosis of rare cancers</td>
<td>Limited by availability of validated antibodies</td>
<td>Limited by assay training set</td>
</tr>
</tbody>
</table>
Box 1: CUP and ToO assays: Key points

- More confident assignment of ToO in CUP can guide management by suggesting the use of therapies shown to be effective in a class of cancers.

- Emerging data suggests that MP ToO assays have a place in the management of CUP patients. Additional trials are required to determine their role in different settings.

- MP tools have a role in ToO determination when standard IHC are non-diagnostic.

- Their role may also be limited in rarer cancer since accuracy is limited by the number and type of cancers selected for the training sets of the assays.

- Going forward, MP assays should be integrated into the pathologist’s diagnostic armamentarium with a combination/sequence of IHC and MP used to optimize accuracy, reliability and cost of ToO predictions.

- Beyond ToO determination, newer genomic methods drawn from non-CUP cancer experience attempt to use individual tumor data to help guide a personalized cancer therapy. The use of these tools in CUP is currently being investigated.

ToO – Tissue of Origin, MP – molecular profiling, IHC – immunohistochemistry
What is CUP?

- Metastatic disease with no identifiable primary
 - Diagnostic IHC and/or high probability call on MP assay
 - High confidence "putative" primary diagnosis

- Uncertain primary presentation
 - Large pathologic differential and/or low-moderate probability call on MP
 - Unclassifiable metastatic disease
 - Unclassifiable primary cancer
 - Poorly differentiated recurrence of treated known primary
 - Metastatic cholangiocarcinoma labeled as CUP cancer
H and E morphologic evaluation shows a poorly differentiated or undifferentiated cancer; clinical presentation not helpful; limited biopsy with difficult access to more tissue

- Keep tissue (2-3 cellular slides) aside for potential ToO profiling
- Proceed with a few (6-7) pertinent IHC based on morphology
 - No result with IHC: Proceed to ToO MP instead of additional IHC
 - No result with MP: Consider next generation sequencing
 - Additional directed IHC to seek concordance with MP

Figure 2: CCR New Strategies
Clinical Cancer Research

New Strategies for Carcinoma of Unknown Primary: the role of tissue of origin molecular profiling

Gauri R. Varadhachary

Clin Cancer Res Published OnlineFirst March 21, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-3030

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2013/03/21/1078-0432.CCR-12-3030. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.