"The definition of primary and secondary glioblastoma" – Letter

Peter Werner¹, Dominik Fritzsch², Heidrun Holland³, Manfred Bauer⁴, Wolfgang Krupp⁵, Karl-Titus Hoffmann², Dorothee Saur⁶, Florian Then Bergh⁶, Osama Sabri¹, Henryk Barthel¹

¹Department of Nuclear Medicine, University Hospital Leipzig, Germany
²Department of Neuroradiology, University Hospital Leipzig, Germany
³Translational Centre for Regenerative Medicine, University of Leipzig, Germany
⁴Division of Neuropathology, University Hospital Leipzig, Germany
⁵Department of Neurosurgery, University Hospital Leipzig, Germany
⁶Department of Neurology, University Hospital Leipzig, Germany

Corresponding author:
Prof. Dr. med. Henryk Barthel, MD, PhD
Department of Nuclear Medicine
University of Leipzig
Liebigstrasse 18
04103 Leipzig, Germany
Email: barth@medizin.uni-leipzig.de
Phone: +49 341 9718233
FAX: +49 341 9718069

Financial disclosure / conflicts of interest:
This study was supported by the German Research Foundation (SA 669/9-1). Dr. Sabri and Dr. Barthel served as consultants and speakers for Bayer Healthcare and Piramal Imaging. Dr. Sabri served as primary investigator for Bayer Healthcare, Piramal Imaging, Siemens Healthcare, and GE Healthcare. Dr. Hoffmann served as speaker for and received educational sponsoring by Bayer Healthcare and Bracco.

(381/400 words; 1 figure)
We read with great interest the article by Kleihues and Ohgaki (1) in which the molecular genetetic concept of primary and secondary glioblastoma (GBM) was reviewed. In response to this most interesting article we want to present the first case in which the occurrence of an IDH1-negative GBM was monitored over time by combined \[^{11}C\]methionine (MET) amino acid transport PET/MRI (Figure 1).

This case underlines that the uncertainty in differential diagnosis between primary and secondary GBM, despite the clinical definition and advanced imaging, can be overcome with molecular genetics: Although in this case there was evidence of a less malignant precursor lesion in PET, a secondary glioblastoma could be ruled out on the basis of the IDH1 profile.

Kleihues and Ohgaki outline the high clinical importance of predicting malignant transformation in primary brain tumors. We would like to expand the molecular genetic perspective of their article by that of molecular imaging. In the present case, the 47% increase in amino acid transport observed over 6 weeks allowed ruling out a low grade tumor. This is in keeping with other literature reporting high accuracy of amino acid brain tumor imaging for grading astrocytomas and evaluating their malignant transformation (2,3). For the future, an incremental diagnostic value in the assessment of astrocytomas can even be expected from multi-parametric analyses of different imaging informations as they are now for the first time obtainable within one session by combined PET/MRI (4,5).
Figure 1 – Case example of a 72-year-old man with sudden onset of aphasia and use of neologisms who showed an unspecific left temporal swelling on initial MRI. On baseline $[^{11}\text{C}]\text{MET PET/MRI}$ (A), high amino acid transport was observed. Due to absence of contrast enhancement in MRI and unremarkable NMR spectroscopy, the finding was diagnosed as a low-grade astrocytoma. In the absence of symptoms under
anticonvulsants a “wait and see” strategy was chosen over stereotactic biopsy. On follow-up $[^{11}C]$MET PET/MRI 6 weeks later (B), the initial PET finding was confirmed by a typical contrast-enhancing mass on MRI with further increase in amino acid transport (increase in target-to-background uptake ratio: 47%). Resection and histopathological workup revealed a GBM. High expression of EGFR was found. Molecular cytogenetic analysis revealed no IDH1 mutation but trisomy 7, monosomy 10 and a hemizygous deletion of PTEN in 50% of the analyzed interphase cells.

