A Phase 1 Dose-Escalation Study of Veliparib Combined with Carboplatin and Etoposide in Patients with Extensive-Stage Small Cell Lung Cancer and Other Solid Tumors

Florence Atrafi, Harry J. M. Groen, Lauren A. Byers, Elena Garralda, Martijn P. Lolkema, Randeep S. Sangha, Santiago Viteri, Young Kwang Chae, D. Ross Camidge, Nashat Y. Gabrail, Beibei Hu, Tian Tian, Silpa Nuthalapati, Elizabeth Hoening, Lei He, Philip Komarnitsky, Antonio Calles

1Erasmus Medisch Centrum, Rotterdam, The Netherlands; 2University of Groningen and University Medical Center Groningen, Groningen, Netherlands; 3The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4START Madrid, Centro Integral Oncológico Clara Campal, Madrid, Spain; 5Cross Cancer Institute, Edmonton, Alberta, CA; 6Dr Rosell Oncology Institute, Dexeus University Hospital, QuironSalud Group, Barcelona, Spain; 7Northwestern University Feinberg School of Medicine, Chicago, IL, USA; 8University of Colorado Cancer Center, Aurora, CO, USA; 9Gabrail Cancer Center, Canton, OH, USA; 10AbbVie Inc., North Chicago, IL, USA; 11Hospital General Universitario Gregorio Marañón, Madrid, Spain

Running title: Phase 1 Study of Veliparib Combination Therapy in SCLC

Keywords: PARP inhibitor, small cell lung cancer, solid tumor, chemotherapy

Corresponding author:

Antonio Calles, M.D., M.Sc.

Hospital General Universitario Gregorio Marañón
Madrid, Spain

Email: antonio.calles@live.com

Phone: (+34) 91-586-8115

Funding

AbbVie Inc. provided financial support for this study and participated in the design, study conduct, analysis, and interpretation of the data, as well as the writing, review, and approval of this manuscript.

Conflict of Interest Disclosures:

H.J.M. Groen: Consulting role for Pfizer, Novartis, Astra-Zeneca, Bristol-Myers Squibb, MSD Oncology, Lilly, AbbVie, and Roche/Genentech; and research funding from Lilly, Roche.

L.A. Byers: Consulting role for AbbVie, AstraZeneca, Bristol-Myers Squibb; research funding from AbbVie, AstraZeneca, Tolero, GenMab.

M.P. Lolkema: Consulting or advisory role for Amgen, Erymet, Johnson & Johnson, Incyte; institution received research funding from Astellas, Johnson & Johnson, Sanofi, MSD.

R.S. Sangha: Consulting or advisory role for Boehringer Ingelheim, AstraZeneca, Roche, Lundbeck, Lilly, Bristol-Myers Squibb, Merck; received honoraria from Boehringer Ingelheim, Pfizer, AstraZeneca, Roche, Lundbeck, Lilly, Bristol-Myers Squibb, Merck; institution has received research funding from Bristol-Myers Squibb, Novartis, AbbVie, Agensys, Roche, Celgene, Janssen.

S. Viteri: Consulting or advisory role for Targovax, Boehringer Ingelheim, Clovis, IDEA Pharma, Novartis, Roche, Promega Biotech Iberica; institution has received research funding from Ariad, GlaxoSmithKline, Astex, Roche, Clovis, Novartis, CytRx Corporation, Puma Biotech, Daiichi,
AbbVie, AstraZeneca, Hanmi, Pfizer, Incyte, Merck KGaA, Servier, Boehringer Ingelheim, MedImmune; travel expenses from Merck Serono.

Y.K. Chae: Speakers’ Bureau for Merck; Consulting or advisory role for Roche, AstraZeneca, Boehringer Ingelheim, Foundation Medicine, Biodesix, Guardant Health; travel expenses from MedImmune; site PI for AbbVie.

B. Hu, T. Tian, S. Nuthalapati, E. Hoening, and L. He: Employed by AbbVie and may hold AbbVie stock or options.

P. Komarnitsky: Employed by AbbVie and Aveo Oncology and may hold AbbVie and Aveo Oncology stock or options; immediate family member employed by Sanofi and may hold Sanofi stock or options; patents/royalties/other intellectual property from Aveo Oncology.

F. Atrafi: Travel expenses for congress presentation reimbursed by AbbVie

E. Garralda: Consultant or advisory role for Roche, NeoMed Therapeutics, Ellypsis Pharma.

D.R. Camidge, N.Y. Gabrail, and A. Calles: Nothing to disclose.

Target Journal: *Clinical Cancer Research*

Word count (CCR limit: 5,000): 4,508/5,000

Number of tables and figures: 6

Supplementary tables and figures: 8
Translational Relevance

This phase 1 dose-escalation study is the first-in-human report of the safety and tolerability of administering veliparib, a poly(ADP-ribose) polymerase inhibitor, combined with carboplatin and etoposide chemotherapy in patients with extensive-stage small cell lung cancer or other advanced/metastatic solid tumors. Veliparib at a dose of 240 mg twice daily as 14-day treatment during combination therapy had an acceptable safety profile and significant antitumor activity. However, continuous dosing of veliparib 240 mg twice daily with carboplatin and etoposide resulted in excessive chemotherapy dose delays due to hematologic toxicity.
ABSTRACT (250 words)

Purpose: This study examined safety, pharmacokinetics and efficacy of veliparib, a PARP inhibitor, combined with carboplatin and etoposide in patients with extensive-stage (ED) small cell lung cancer (SCLC) and other solid tumors.

Experimental Design: 3+3 design was used for dose escalation of oral veliparib in combination with carboplatin (AUC 5 on Day 1) and etoposide (100 mg/m² on Days 1–3) in 21-day cycles. Veliparib dose was explored from 80–240 mg twice daily (BID) on 7-day, 14-day or continuous schedules. Patients without disease progression continued on maintenance monotherapy (veliparib 400 mg BID) until disease progression or unacceptable toxicity.

Results: Thirty-nine patients were enrolled to determine the recommended phase 2 dose (RP2D) of 240 mg veliparib for 14-days combined with carboplatin and etoposide based on long-term tolerability. Dose-limiting toxicity occurred in one patient (grade 2 toxic motor polyneuropathy) at veliparib 240 mg BID 7-days. Most common adverse events related to veliparib were nausea (39%), fatigue (39%), and hematologic toxicities. Continuous dosing of veliparib 240 mg BID with carboplatin and etoposide resulted in excessive chemotherapy dose delays due to hematologic toxicity (grade 3/4 neutropenia/thrombocytopenia). Etoposide pharmacokinetics was not affected by veliparib. Confirmed responses occurred in 17/39 (44%) and 16/25 (64%) of all enrolled and ED SCLC patients, respectively. At the recommended phase 2 dose, confirmed responses occurred in 6/13 (46%) and 5/6 (83%) of all enrolled and ED SCLC patients, respectively.

Conclusions: Veliparib (240 mg BID 14-days) plus carboplatin/etoposide can be safely combined. Phase 2 of this study is ongoing in first-line patients with ED SCLC.
INTRODUCTION

The majority of small cell lung cancer (SCLC) cases are diagnosed as extensive-stage disease (ED), for which there is a poor prognosis and no curative treatment (1). Carboplatin in combination with etoposide has been extensively tested in randomized trials in SCLC and has shown efficacy in treatment of ED SCLC (2,3). Incorporation of novel targeted agents, such as poly(ADP-ribose) polymerase (PARP) inhibitors, that potentially enhance the efficacy of standard chemotherapy warrant exploration.

PARP1 is overexpressed in SCLC tumors and PARP inhibitors have shown activity in SCLC cell lines and animal models (4,5,6). Upon DNA damage induced by various chemotherapeutic agents, PARPs 1 and 2 bind to the damaged DNA sites and further recruit repair protein complexes. Inhibition of PARP results in less efficient DNA repair following DNA-damaging insults.

Veliparib is an orally bioavailable PARP 1/2 inhibitor shown to enhance the anti-tumor activity of platinum-based agents and etoposide against SCLC in preclinical models (7,8). Veliparib is well tolerated as monotherapy (9), and combinations of veliparib with platinum-based and other cytotoxic chemotherapy are feasible (10-15). Single agent PARP inhibitors are efficacious in tumor types with genetic defects of DNA repair (eg, in BRCA and functionally related loci), or in platinum-sensitive ovarian cancer where such genetic defects are frequent (16-18). The underlying reason for SCLC platinum sensitivity may be different from that of ovarian cancer, given the BRCA loss of function is not frequently observed in SCLC (19). In SCLC tumors where PARP1 is overexpressed, proteomic analysis showed that PARP1 inhibition has activity in preclinical models (4,6) and in a subset of SCLC patients in which a PARP inhibitor was combined with the DNA alkylator temozolomide (20). Additionally, due to frequently loss of retinoblastoma protein in SCLC, E2F is expressed leading to activation of several E2F targets including DNA repair pathways (19). Therefore, inhibition of DNA repair with
veliparib in combination with contemporaneous DNA damage by carboplatin was evaluated based on these studies. In a phase 1 study, Owonikoko and colleagues (12) showed promising preliminary efficacy of veliparib plus cisplatin and etoposide, with partial or complete responses in 5 of 7 patients with ED SCLC. Thus, we aimed to evaluate the safety, feasibility and preliminary efficacy of veliparib in combination with carboplatin and etoposide in patients with tumors for which this treatment was considered appropriate with a special focus in ED SCLC.

Biomarkers for SCLC have been proposed to associate with clinical responses to therapy (4). c-Kit is expressed in 37% of SCLC patients and is related to poor prognosis (21). E2F1 has an important role in the induction of apoptosis in response to DNA damage, with increased levels of E2F1 triggering invasion and tumor growth. PARP1 has been identified as an important co-activator of E2F1 (22). SLFN11 was also shown to correlate with PARP inhibitor activity in SCLC (5,20,23). Expression of candidate biomarkers was explored in this study.
PATIENTS AND METHODS

Patients

Patients with histologically or cytologically confirmed advanced or metastatic solid tumors for which carboplatin and etoposide treatment was considered appropriate were included. Eligible patients were ≥18 years of age, had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 1 and had adequate hematology, blood chemistry, bone marrow, liver, and renal functions.

Patients were not eligible if they received prior anti-cancer therapy other than: hormonal, non-myelosuppressive, biologic, targeted, or immune therapy (completed ≥ 4 weeks prior to Cycle 1 Day -2); one line of cytotoxic chemotherapy (including carboplatin, cisplatin, etoposide, paclitaxel, doxorubicin, cyclophosphamide, methotrexate) (completed ≥ 4 weeks prior to Cycle 1 Day -2); adjuvant/neoadjuvant radiotherapy (completed ≥ 12 months prior to Cycle 1 Day -2, with field not involving >10% of bone marrow reserve). Patients with central nervous system or leptomeningeal metastases were not eligible (brain imaging was performed if brain metastases were suspected), nor were patients with a history of seizures within 12 months of Cycle 1 Day -2 or at increased risk of seizures.

Study design and treatment

This phase 1 dose-escalation study was conducted at 12 sites globally and is registered at Clinicaltrials.gov, number NCT02289690. Primary objectives were to establish the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) for veliparib combined with carboplatin and etoposide, and to evaluate the pharmacokinetic interaction between veliparib and etoposide. Secondary objectives were to evaluate the safety of maintenance veliparib
monotherapy at 400mg BID continuously in patients completing four cycles of carboplatin, etoposide and veliparib without evidence of disease progression.

Dose escalation followed a standard 3 + 3 design, with a condition applied for dose level 1, which allowed three additional patients to be entered in the dose level 1 if two of six initial patients experienced dose limiting toxicities (DLTs); the dose escalation decision depended on review of DLTs and discussion with investigators. A minimum of three evaluable patients were enrolled at each dose level. Dose escalation decisions were made following the completion of the DLT observation period (Cycle 1 Day -2 to pre-dose Cycle 2 Day 1) for the evaluable patients in the intended cohort size. The MTD was defined as the maximum dose at which less than two of six or ≤2 of nine patients experienced a DLT during the DLT observation period.

The veliparib starting dose and schedule was 80 mg BID orally administered on Days -2 to 5 (7-day schedule) during Cycles 1, 3 and 4 combined with intravenous infusions of carboplatin (AUC 5 mg/mL•min) on Day 1 and etoposide (100 mg/m²) on Days 1 to 3 during 21-day cycles. Prespecified veliparib dose escalation cohorts consisted of 80, 120, 160, and 200 mg.

If the MTD of the 7-day schedule was not reached at ≤200 mg BID veliparib dose level, veliparib administration in a 14-day schedule (Days -2 to 12) and/or a continuous schedule (Days -2 to 19) in combination with carboplatin and etoposide could be explored. Additional cohorts could be enrolled at higher veliparib doses based on the number of DLTs (described below) observed during the first 21 days in the current cohort, the cumulative toxicity rate at that dose combination, upon investigators agreement and considering not exceeding >50% (or corresponding by protocol) of the dose from previous cohort level. For phase 1 patients receiving non-continuous dosing, veliparib in Cycle 2 was administered on Days 2 to 5 or Days 2 to 12 depending on the dosing schedule to allow for evaluation of potential impact of veliparib on etoposide kinetics. Upon completion of 4 cycles of combination therapy, patients without evidence of disease progression continued on maintenance monotherapy of veliparib 400 mg
BID until disease progression or unacceptable toxicity. This dose has been previously established for veliparib monotherapy (8, 24).

This study was conducted in accordance with the protocol, International Conference on Harmonization Good Clinical Practice guidelines, applicable regulations and guidelines governing clinical study conduct, and ethical principles that have their origin in the Declaration of Helsinki. The human investigations were performed after approval by an institutional review board and in accordance with an assurance filed with and approved by the U.S. Department of Health and Human Services. All patients provided written informed consent before participation in the trial.

Safety and tolerability

Safety analysis was conducted for all patients who received at least one dose of veliparib. Treatment-emergent adverse events (TEAEs) were reported according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03, and evaluated throughout the course of the study for evidence of acute, delayed, or cumulative toxicities.

DLTs were defined as any of the following TEAEs considered to be related to veliparib that occurred during the first 21-day cycle: grade 4 thrombocytopenia, grade 4 neutropenia, grade 3 febrile neutropenia with fever lasting more than 7 days or grade 4 febrile neutropenia of any duration, occurring during Cycle 1 and associated with treatment delay of more than 14 days in initiating Cycle 2 chemotherapy; grade ≥3 non-hematologic toxicity that increased at least 2 grade levels from baseline (excluding nausea and vomiting lasting ≤48 hours or inadequately treated, electrolyte abnormalities resolving within ≤24 hours, hypersensitivity reactions, or alopecia); 3) grade 2 non-hematologic toxicity that increased at least 2 grade levels from baseline and required a treatment delay of more than 14 days in initiation of Cycle 2; any toxicity that increased at least 2 grade levels from baseline and required at least one of: dose
modification within Cycle 1 or omission of carboplatin, more than one daily etoposide dose, or
>30% veliparib doses in Cycle 1.

All patients were monitored for DLTs from Cycle 1 Day -2 to pre-dose on Cycle 2 Day 1. The
RP2D was determined by the rate of DLTs and overall tolerability of veliparib plus carboplatin
and etoposide.

Serious AEs were those TEAEs that, in the opinion of investigator, were life-threatening,
required hospitalization or prolongation of hospitalization, caused persistent or significant
disability/incapacity or congenital anomaly, were an important medical event requiring medical
or surgical intervention to prevent serious outcome, or resulted in death not related to ED SCLC.

Pharmacokinetics

Blood samples for pharmacokinetic (PK) analysis were collected at the following time points
for veliparib on Cycle 1 Day 1: 0 hour (pre-dose), and at 1, 2, 3, 5, 8, and 24 hour(s) post-dose.
Blood samples for etoposide PK analysis were collected on Cycle 1 Day 1 when co-
administered with veliparib and carboplatin, and on Cycle 2 Day 1 co-administered with
carboplatin but in the absence of veliparib at 55 minutes (5 minutes before the end of infusion)
and 3, 5, 8, and 24 hours post-dose. Veliparib and etoposide plasma concentrations were
determined using liquid chromatography with tandem mass spectrometric detection with a lower
limit of quantitation 1.05 ng/mL and 160 ng/mL, respectively. Veliparib and etoposide PK
parameters were estimated using non-compartmental methods.

Efficacy
Objective response rate (ORR: confirmed complete [CR] or partial response [PR]) was assessed by the investigator using Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, and was evaluated in patients with at least one measurable lesion at baseline.

Progression-free survival (PFS) was defined as the number of days from the date of patient randomization to the date of earliest disease progression or death of all causes. Radiographic tumor assessments for response were conducted by CT scanning at baseline, every 6 weeks from Cycle 1 Day -2 for the first 24 weeks, and then every 9 weeks until disease progression (radiographic progression per RECIST version 1.1 or clinical disease progression).

Time to response (for all patients with objective response) was defined as the number of days from the date of the first dose to the date of the first CR or PR. Duration of response (for all patients with response CR or PR) was defined as the number of days from the date of the first CR or PR to the earliest documentation of radiographic PD or death of all causes. If a patient is still responding, then the patient's data was censored at the date of the patient's last available disease assessment (radiographic or clinical).

Biomarker analysis

Tumor macrodissection and nucleic acid isolation

Formalin fixed, paraffin embedded (FFPE) archival tumor samples (pre-treatment) were analyzed. Tumor RNA was obtained from macrodissected tumors to ensure >50% tumor content. The AllPrep kit (Qiagen) was used for nucleic acid isolation.

Library preparation and sequencing

Integrity of isolated RNA was performed using an Agilent bioanalyzer and quantitated using picogreen. Library preparation was performed with 1–50ng of total RNA. ds-cDNA was prepared using the SeqPlex RNA Amplification Kit (Sigma). cDNA was blunt ended, had an adenosine
base added to the 3’ ends, and then had Illumina sequencing adapters ligated to the ends. Ligated fragments were then amplified for 12 cycles using primers incorporating unique index tags. Fragments were sequenced on Illumina HiSeq-2500 or HiSeq-3000 using single reads extending 50 bases; 25–30M reads per library were targeted.

Data acquisition and processing

RNA-seq reads were aligned to the Ensembl release 76 assembly with STAR v2.0.4b. Gene counts were derived from the number of uniquely aligned unambiguous reads by Subread:featureCount v1.4.5. Transcript counts were produced by Sailfish v0.6.3. Sequencing performance was assessed for total number of aligned reads, total number of uniquely aligned reads, genes and transcripts detected, ribosomal fraction known junction saturation and read distribution over known gene models with RSeQC v2.3. Individual gene expression levels were examined for their association with clinical outcome; these genes of interest (n=34) included BRCA1, BRCA2, SLFN11, PARP1, E2F1, CKIT, and Byers DNA-damaging signature genes (4).

Statistical analyses

Toxicity data were tabulated to assess DLTs and the MTD. All patients who received at least one dose of study medication were included in the safety assessment. Descriptive statistics were used for demographics and safety. For biomarkers data, a two-sided group t-test was used to compare RNA gene expression with clinical outcome measures. For all statistical analyses, significance was determined using a two-sided P value ≤ 0.05, unless otherwise stated. The data cutoff for analysis of safety and efficacy results was December 8, 2017. The sample size of patients required for dose escalation was determined by the toxicities observed as the trial progressed. The Kaplan-Meier method was used to estimate PFS.
RESULTS

Patient characteristics

As of December 8, 2017, 39 patients were included in this trial. These patients had either ED SCLC (n=25) or other solid tumors (n=14) [gastrointestinal neuroendocrine (n=4), large cell neuroendocrine carcinoma of the lung (n=3), pancreatic (n=1), neuroendocrine unspecified (n=1), adenoid cystic carcinoma of the parotid gland (n=1), esthesioneuroblastoma of the nose (n=1), squamous cell carcinoma of the penis (n=1), metastasis in sinus cavernosum (n=1), and mediastinum of high grade neuroendocrine origin (n=1)]. All patients were evaluable for safety, DLT and efficacy.

Patient demographics and clinical characteristics are shown in Table 1. Eight patients had received prior oncology therapies (3 patients with ED SCLC and 5 patients with other solid tumors). Of 25 ED SCLC patients, only one patient (at 80 mg BID veliparib) had received prior cisplatin and etoposide. Three patients with other solid tumors had received prior cisplatin, and two of these also received prior etoposide.

Treatment exposure and safety

Veliparib dose could be escalated up to 240 mg BID in a 7-day schedule. The MTD for the 7-day schedule was not reached. Consequently, veliparib was further explored in a 14-day and continuous schedules. Dose-limiting toxicity occurred in one patient, a grade 2 toxic motor polyneuropathy (loss of sphincter function) associated with grade 3 fatigue, grade 3 febrile neutropenia, grade 2 generalized pain and grade 1 hypomagnesemia, at veliparib dose of 240 mg BID for 7 days (Table 2). All events resolved within 10 days of onset.

During continuous dosing of veliparib 240 mg BID with carboplatin and etoposide, all patients (n=4/4) reported grade 3/4 neutropenia and 75% of patients (n=3/4) reported grade 3/4 thrombocytopenia (Table 3A); this level of toxicity at the highest dose was not acceptable.
Continuous dosing of veliparib 240 mg BID with carboplatin and etoposide resulted in excessive carboplatin and etoposide dose delays (Table 2) due to hematologic toxicity (the highest-grade AEs in patients with dose delays were grade 3 or grade 4 neutropenia and grade 3 thrombocytopenia) and did not support administration of full dose chemotherapy. The RP2D for veliparib was determined to be 240 mg BID for 14 days with carboplatin (AUC 5 mg/mL•min) on Day 1 and etoposide (100 mg/m²) on Days 1 to 3 during 21-day cycles for 4 cycles.

Tolerability of the combination cycles is summarized in Supplementary Table S1. Adverse events that led to veliparib interruption/reduction included febrile neutropenia, thrombocytopenia, neutropenia, and nausea. Ten of 39 patients experienced dose delays during combination therapy. The highest number of dose delays occurred for patients on 240 mg BID veliparib for 14 days (Table 2), with the highest-grade AEs reported as grade 3/4 neutropenia in 3 patients, and grade 3/4 thrombocytopenia, grade 3 febrile neutropenia, and grade 3 fatigue/decreased appetite in one patient (Table 2).

The most common adverse events related to veliparib during combination therapy were hematologic toxicities neutropenia (59%), thrombocytopenia (39%), and anemia (33%), and nausea and fatigue (39% each) (Table 3A). Grade 3 or grade 4 adverse events related to veliparib included neutropenia (56%), thrombocytopenia (33%), anemia (21%), febrile neutropenia and leukopenia (15% each). Many of the adverse events related to veliparib (eg, nausea, fatigue, alopecia, anemia, neutropenia, thrombocytopenia) were also related to carboplatin and etoposide treatment.

Serious adverse events not specifically attributed to veliparib included febrile neutropenia in three patients and hyponatremia in two patients. There were two fatal adverse events; the causes of death were disease progression in one patient at 160 mg BID and non-disease progression (gastric perforation/abdominal sepsis) in one patient at 200 mg BID. These deaths were not considered related to veliparib, carboplatin, or etoposide.
Twenty-five of the 39 patients in combination cycles continued to veliparib monotherapy. Adverse events during maintenance monotherapy are presented in Table 3B. Treatment exposure during combination therapy was a median of 3 cycles (range: 1–25), and for maintenance treatment median exposure was 6 cycles (range: 1–25).

Pharmacokinetics

Veliparib co-administered with carboplatin and etoposide exhibited approximately dose-proportional increases in C_{max} and AUC in the dose range of 80 to 240 mg BID (Fig. 1, Supplementary Table S2). Maximum veliparib concentrations were observed approximately 1 to 2 hours following veliparib administration (Supplementary Table S2). Etoposide pharmacokinetics were comparable when co-administered with and without veliparib (Supplementary Fig. S1 and Supplementary Table S3).

Efficacy

Fifty-six percent of all dosed patients (22/39) achieved a $\geq 30\%$ decrease in the sum of tumor target lesion diameter from baseline (Fig. 2). Confirmed responses occurred in 44% (95% CI: 28, 60) ($n=17/39$) of all patients. For patients with ED SCLC, a confirmed complete or partial response was observed in 64% (95% CI: 43, 82) ($n=16/25$) of patients across all dose levels, in 60% ($n=3/5$) of patients on veliparib 240mg BID 7-days and in 83% (95% CI: 36, 100) ($n=5/6$) of patients on veliparib 240 mg BID 14-days (Table 4). Confirmed responses for other tumor types were observed in 7% (95% CI: 2, 40) of patients ($n=1/14$; 1 neuroendocrine) across all dose levels and in 14% (95% CI: 0, 58) ($n=1/7$; neuroendocrine) at the RP2D.
In patients with prior carboplatin, cisplatin, and/or etoposide treatment, one patient with ED SCLC had a partial response and three patients with other solid tumors had stable disease. No patient with ED SCLC in the RP2D treatment group had received prior chemotherapy.

Median progression-free survival (mPFS) of the RP2D treatment group (n=13) was 5.6 months, and 4.5 months for other cohorts (all doses excluding RP2D, n=26). Patients in the 240 mg BID cohorts had the longest duration on study, including one patient with a complete response and one patient with stable disease who remained on study over 18 months (Supplementary Fig. S2). mPFS for all dosed patients (n=39) was 5.3 months (95% CI 4.2, 5.7) (Supplementary Fig. S3). There were 28 events (72% of patients) with radiological progression and death. mPFS was 5.3 months for patients with ED SCLC across all dose levels (n=25) vs.5.8 months at the RP2D (n=6). mPFS for patients with other solid tumors was 5.6 months across all doses (n=14).

The median time to response for all dosed patients was 1.4 months (range 1.3 – 4.3). The median duration of response for all dosed patients was 5.0 months (range 1.4 – 8.6) and 5.7 months (range 4.2 – 7.1) for all patients at the RP2D (n=13).

Biomarkers

Whole transcriptome RNA-seq was successfully conducted on pre-treatment tumor tissues from 25 patients with confirmed clinical efficacy data. Tumor type, treatment regimen and response status are shown in Supplemental Table S4. Of these patients, 17 patients had SCLC, 2 had large cell neuroendocrine carcinoma of the lung (LCNEC), and 6 had other solid tumors. Partial response was observed in 59% of SCLC patients (n=10/17), and no response was observed for patients with other types of tumors (n=0/8). Biomarker cohort mirrors efficacy findings from overall cohort.
Because of the small sample size and heterogeneous veliparib dose, unsupervised genome-wide clustering analysis failed to form clusters that are enriched with clinical response (data not shown). We further analyzed genes of interest that included PARP family genes, E2F1, SLFN11, and Byers DNA-damaging signature genes (4). There is a trend that high E2F1 tends to associate with response in SCLC patients (p=0.129 from two-sided group t-test, n=17) (Supplementary Fig. S4).

DISCUSSION

This phase 1 study evaluated veliparib in combination with carboplatin and etoposide in patients considered suitable for this regimen by the investigators, with an emphasis on patients with ED SCLC. Veliparib plus carboplatin and etoposide had an acceptable safety profile, with a RP2D of 240 mg BID 14-days based on long-term tolerability. Continuous dosing of veliparib at 240 mg BID with carboplatin and etoposide resulted in excessive carboplatin and etoposide dose delays due to hematologic toxicity, predominantly grade 3/4 neutropenia and grade 3/4 thrombocytopenia in ≥75-100% of patients. Since we could not maintain continuous dosing, RP2D was based more on long-term safety than on DLTs. The 3+3 design and also the “up-and-down” and “short-and-extended” veliparib dosing may have helped to contour toxicity and better define the RP2D as the pre-planned MTD for the 7-day schedule was not reached. The RP2D was selected based on the maximal achievable dose intensity of veliparib in combination with carboplatin and etoposide which did not compromise dose intensity of the carboplatin and etoposide regimen itself.

In a previous phase 1 study, RP2D of veliparib in combination with cisplatin and etoposide was established at 100 mg BID in a 7-day schedule (11). In the current trial, we achieved a RP2D of 240 mg BID in a 14-day schedule for veliparib plus carboplatin and etoposide based on long term tolerability. Doublet chemotherapy with carboplatin/etoposide is known to be as
effective as cisplatin/etoposide in untreated SCLC patients with a more favorable toxicity profile than the cisplatin containing regimen (25). This could be an explanation for achieving a higher RP2D of veliparib in our trial with longer treatment duration.

The lack of pharmacokinetic drug–drug interaction between veliparib and etoposide was anticipated. Veliparib is a Biopharmaceutical Classification System Class 1 compound primarily eliminated via renal excretion and to a lesser extent by metabolism by cytochrome P450 enzymes (primarily CYP2D6 and to a lesser extent by CYP3A4), and it has not been shown to inhibit or induce major drug metabolizing enzymes or transporters at therapeutic levels (26-28). Etoposide is cleared by both renal and non-renal paths; approximately 56% of the dose was excreted unchanged in urine as parent and metabolites, biliary excretion of unchanged drug constitutes 44% on the dose and CYP3A4 is primarily responsible for its metabolism (29). In the current study, co-administration of veliparib with carboplatin and etoposide had no effect on etoposide pharmacokinetics suggesting no interaction in the metabolism/elimination of these two compounds. Veliparib has been previously shown to not impact carboplatin pharmacokinetics (30) and hence was not explicitly evaluated in the current study. Veliparib pharmacokinetic parameters were approximately dose proportional in the dose range of 80 mg to 240 mg BID and are consistent with previous studies (30, 31).

Responses were seen across all dose levels. Confirmed responses were observed in 64% of patients with ED SCLC across all dose levels, in 60% of ED SCLC patients on veliparib 240mg BID 7-days, and in 83% of ED SCLC patients on 240 mg BID 14-days In patients with prior carboplatin, cisplatin, and/or etoposide, one patient with ED SCLC had a partial response and three patients with other solid tumors had stable disease. Median PFS was 5.3 months for all dosed patients, and 5.3 and 5.8 months for patients with ED SCLC across all dose levels and at the RP2D, respectively. However, the relative small numbers for each group make it impossible to draw any formal conclusion on the interaction of veliparib dose level with efficacy.
A preclinical study demonstrated that SCLC cell lines were highly sensitive to PARP-inhibition when treated for 14-days (4). Thus, the RP2D of 240 mg veliparib for 14 days added to the known doublet chemotherapy has the potential to improve treatment outcome. However, historical data with platinum based doublet chemotherapy showed a median progression-free survival ranging between 4.6 to 12 months (32). Considering relatively high response rate of the doublet chemotherapy, superiority of addition of veliparib to established regimen can only be investigated in a larger two arm phase 2 trial. The phase 2, randomized, double-blind part of this study of veliparib in combination with carboplatin and etoposide is ongoing in first-line patients with ED SCLC.

E2F1 is known to have an important role in cell-cycle progression and the induction of apoptosis in response to DNA damage with increased levels of E2F1, triggering invasion and tumor growth. PARP-1 has been identified as an important co-activator of E2F1 (22). Thus, inhibition of PARP-1 can have a dual anti-proliferative effect by directly targeting DNA repair and other E2F1-regulated DNA repair proteins. This is supported by the study of Byers et al (4) in which protein lysate from SCLC cell lines treated with PARP-inhibitors showed a decrease in DNA repair proteins and E2F1 target proteins over time. In terms of identifying predictive biomarkers in this study, preliminary results indicate that responder patients with SCLC tend to have high E2F1 levels. E2F1 regulates expression of PARP and other DNA repair targets and PARP may cause a positive feedback loop on E2F1 (4), which may explain this observation. However, there was not a complete distinction between responders and non-responders based on an identifiable E2F1 level, and in a single arm study including active chemotherapy within the combination the significance of these results remain uncertain. Since most of the patients included in the trial showed some degree of response, a true comparator including patients with progressive disease as best response is lacking, limiting the validation of the results. Without a randomized control arm, it is hard to determine whether E2F1 or any other biomarker is
associated with veliparib effect specifically or a combination therapy effect. They may be worthy of exploration in later randomized trials. In this biomarker analysis, the role for veliparib cannot be established as the chemotherapy may also select for higher E2F1 expressing cells.

In conclusion, we have established a relatively high RP2D of the PARP1-inhibitor veliparib in combination with a bone marrow toxic doublet chemotherapy with a longer treatment schedule (14-day schedule) than previous trials. PARP inhibitors investigated in other trials with cytotoxic agents included compounds with a strong PARP-trapping ability (33-37) limiting the combination with chemotherapy. Less potent PARP inhibitors with mainly catalytic PARP inhibition properties like veliparib are more suitable for combination therapy with cytotoxic agents. Thus, selecting PARP inhibitors based on their PARP inhibition potency does matter for selecting as monotherapy or in combination therapy. Due to phase 1 study design, the small sample size and small number of samples for biomarker testing, data from a larger phase 2 trial is necessarily to support enhanced efficacy.

The additional toxicity on top of those from full dose carboplatin and etoposide was mainly without dose limiting toxicity (except grade 3 event in one patient) leading to a recommended veliparib dosing of 240 mg BID for 14 days during chemotherapy followed by maintenance dosing of 400 mg BID. As this schedule is well tolerated and a high number of responses were seen, it should be explored further, especially in SCLC where there is ample activity.

ACKNOWLEDGEMENTS

AbbVie and the authors thank the patients who participated in this clinical trial and all study investigators for their contributions. We thank Peter Ansell, Ph.D., for his assistance with biomarker design, strategy, operation, and interpretation. Medical writing support was provided by Ana Mrejeru, Ph.D. (AbbVie).
AVAILABILITY OF DATA AND MATERIAL

AbbVie is committed to responsible data sharing regarding the clinical trials we sponsor. This includes access to anonymized, individual and trial-level data (analysis data sets), as well as other information (e.g., protocols and Clinical Study Reports), as long as the trials are not part of an ongoing or planned regulatory submission. This includes requests for clinical trial data for unlicensed products and indications.

This clinical trial data can be requested by any qualified researchers who engage in rigorous, independent scientific research, and will be provided following review and approval of a research proposal and Statistical Analysis Plan (SAP) and execution of a Data Sharing Agreement (DSA). Data requests can be submitted at any time and the data will be accessible for 12 months, with possible extensions considered. For more information on the process, or to submit a request, visit the following link: https://www.abbvie.com/our-science/clinical-trials/clinical-trials-data-and-information-sharing/data-and-information-sharing-with-qualified-researchers.html.
REFERENCES

TABLES AND FIGURES.

FIGURE TITLES AND LEGENDS

Figure 1. Dose proportionality of veliparib

Caption:

C_{max}, maximum plasma concentration; AUC_{0-12}, area under the plasma concentration–time curve from time 0 to 12 hours.

Figure 2. Tumor size best percent change post-baseline and progression-free survival

Caption:

Individual patient data are shown for $n=36$ patients with post-baseline assessment. Each column has progression-free survival (black bars, top) and best percent tumor size change from baseline (colored bars, bottom) for the same individual patient. There was one patient with 0% change from baseline tumor size.

Colored bars: solid colors indicate patients with extensive-stage small cell lung cancer; striped bars indicate patients with other solid tumors. Dashed line shows a threshold of 30% decrease in tumor size from baseline. Asterisk denotes one patient with a complete response.
Table 1. Patient demographic and baseline clinical characteristics

<table>
<thead>
<tr>
<th>Characteristic, n (%)</th>
<th>All patients (n=39)</th>
<th>RP2D cohort* (n=13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>Median [range]</td>
<td>62 [43–79]</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>13 (33%)</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>26 (67%)</td>
</tr>
<tr>
<td>Tumor type</td>
<td>ED SCLC</td>
<td>25 (64%)</td>
</tr>
<tr>
<td></td>
<td>Other Solid Tumors</td>
<td>14 (36%)</td>
</tr>
<tr>
<td>ECOG PS</td>
<td>Grade 0</td>
<td>15 (39%)</td>
</tr>
<tr>
<td></td>
<td>Grade 1</td>
<td>24 (62%)</td>
</tr>
<tr>
<td>Prior therapies</td>
<td>Any prior oncology medication</td>
<td>8 (21%)</td>
</tr>
<tr>
<td></td>
<td>Carboplatin</td>
<td>1 (3%)</td>
</tr>
<tr>
<td></td>
<td>Cisplatin</td>
<td>4 (10%)</td>
</tr>
<tr>
<td></td>
<td>Etoposide</td>
<td>3 (8%)</td>
</tr>
</tbody>
</table>

ECOG PS, Eastern Cooperative Oncology Group performance status; ED SCLC, extensive-stage disease small cell lung cancer.
*RP2D, recommended phase 2 dose of 240 mg veliparib twice daily as 14-day treatment.
Table 2. Overview of treatment-emergent adverse events during combination cycles

<table>
<thead>
<tr>
<th>n (%)</th>
<th>80 mg-7d BID (n=4)</th>
<th>120 mg-7d BID (n=3)</th>
<th>160 mg-7d BID (n=4)</th>
<th>200 mg-7d BID (n=3)</th>
<th>240 mg BID-7d (n=8)</th>
<th>240 mg BID-14d (n=13)</th>
<th>240 mg BID-cont (n=4)</th>
<th>Total (n=39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 or 4 AE</td>
<td>4 (100%)</td>
<td>3 (100%)</td>
<td>4 (100%)</td>
<td>3 (100%)</td>
<td>7 (88%)</td>
<td>13 (100%)</td>
<td>4 (100%)</td>
<td>38 (97%)</td>
</tr>
<tr>
<td>Serious adverse event</td>
<td>3 (75%)</td>
<td>1 (33%)</td>
<td>3 (75%)</td>
<td>2 (67%)</td>
<td>3 (38%)</td>
<td>5 (39%)</td>
<td>3 (75%)</td>
<td>20 (51%)</td>
</tr>
<tr>
<td>AE leading to veliparib reduction or interruption</td>
<td>2 (50%)</td>
<td>1 (33%)</td>
<td>3 (75%)</td>
<td>2 (67%)</td>
<td>4 (50%)</td>
<td>7 (54%)</td>
<td>3 (75%)</td>
<td>22 (56%)</td>
</tr>
<tr>
<td>AE leading to carboplatin reduction or interruption</td>
<td>1 (25%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>1 (33%)</td>
<td>0</td>
<td>2 (59%)</td>
<td>2 (50%)</td>
<td>10 (26%)</td>
</tr>
<tr>
<td>AE leading to etoposide reduction or interruption</td>
<td>2 (50%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>1 (33%)</td>
<td>2 (25%)</td>
<td>5 (39%)</td>
<td>2 (50%)</td>
<td>13 (33%)</td>
</tr>
<tr>
<td>Dose-limiting toxicity</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (13%)</td>
<td>0</td>
<td>0</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Dose delays b</td>
<td>1 (25%)</td>
<td>2 (67%)</td>
<td>1 (25%)</td>
<td>0</td>
<td>1 (13%)</td>
<td>4 (31%)</td>
<td>1 (25%)</td>
<td>10 (26%)</td>
</tr>
</tbody>
</table>

AE, adverse event

a Toxic motor polyneuropathy (grade 2).

b The highest-grade AEs in patients with dose delays (by cohort):
- 80mg-7d BID (grade 2 fatigue n=1);
- 120mg-7d BID (grade 3 thrombocytopenia n=1; grade 3 anemia n=1);
- 160mg-7d BID (grade 3 anemia and grade 3 myocardial infarction in same patient n=1);
- 240mg-7d (grade 2 decreased appetite n=1);
- 240mg-14d (grade 3/4 neutropenia n=3; grade 3/4 thrombocytopenia and grade 3 febrile neutropenia and grade 3 fatigue/decreased appetite in same patient n=1);
- 240mg-cont (grade 3/4 neutropenia and grade 3 thrombocytopenia in same patient n=1).
Table 3. Veliparib-related adverse events of all-grades in ≥20% of all patients or Grade 3/4 in ≥10% of all patients during (A) combination therapy and (B) maintenance monotherapy

A.

<table>
<thead>
<tr>
<th>n (%)</th>
<th>80mg BID-7d (n=4)</th>
<th>120mg BID-7d (n=3)</th>
<th>160mg BID-7d (n=4)</th>
<th>200mg BID-7d (n=3)</th>
<th>240mg BID-7d (n=8)</th>
<th>240mg BID-14d (n=13)</th>
<th>240mg BID-cont (n=4)</th>
<th>Total (n=39)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All grade</td>
<td>G3/4</td>
<td>All grade</td>
<td>G3/4</td>
<td>All grade</td>
<td>G3/4</td>
<td>All grade</td>
<td>G3/4</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>2 (50%)</td>
<td>2 (50%)</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2 (50%)</td>
<td>0</td>
<td>3 (100%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (67%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (25%)</td>
<td>1 (25%)</td>
<td>2 (67%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>0</td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>1 (25%)</td>
<td>1 (25%)</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (25%)</td>
<td>0</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>1 (25%)</td>
<td>0</td>
<td>2 (67%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alopecia</td>
<td>1 (25%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>0</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>1 (25%)</td>
<td>1 (25%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
</tr>
</tbody>
</table>
B.

<table>
<thead>
<tr>
<th>Condition</th>
<th>All grade</th>
<th>G3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia(^a)</td>
<td>2 (50%)</td>
<td>1 (50%)</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>2 (67%)</td>
<td>2 (67%)</td>
<td>0</td>
<td>0</td>
<td>3 (75%)</td>
<td>1 (25%)</td>
<td>10 (100%)</td>
<td>9 (90%)</td>
<td>3 (100%)</td>
<td>2 (100%)</td>
<td>19 (76%)</td>
<td>16 (64%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia(^b)</td>
<td>1 (50%)</td>
<td>0</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>2 (50%)</td>
<td>1 (25%)</td>
<td>7 (70%)</td>
<td>3 (30%)</td>
<td>1 (50%)</td>
<td>0</td>
<td>13 (52%)</td>
<td>5 (20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1 (50%)</td>
<td>1 (50%)</td>
<td>2 (67%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (50%)</td>
<td>0</td>
<td>5 (50%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10 (40%)</td>
<td>1 (4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (50%)</td>
<td>0</td>
<td>3 (100%)</td>
<td>1 (33%)</td>
<td>0</td>
<td>1 (100%)</td>
<td>0</td>
<td>1 (25%)</td>
<td>2 (20%)</td>
<td>1 (10%)</td>
<td>0</td>
<td>0</td>
<td>9 (36%)</td>
<td>2 (8%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>1 (50%)</td>
<td>0</td>
<td>2 (67%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (25%)</td>
<td>0</td>
<td>3 (30%)</td>
<td>1 (10%)</td>
<td>1 (50%)</td>
<td>0</td>
<td>8 (32%)</td>
<td>1 (4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>1 (33%)</td>
<td>1</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>1 (25%)</td>
<td>1 (25%)</td>
<td>3 (30%)</td>
<td>1 (10%)</td>
<td>0</td>
<td>0</td>
<td>6 (24%)</td>
<td>4 (16%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (25%)</td>
<td>0</td>
<td>2 (20%)</td>
<td>0</td>
<td>1 (50%)</td>
<td>0</td>
<td>5 (20%)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukopenia(^a)</td>
<td>1 (50%)</td>
<td>1 (50%)</td>
<td>0</td>
<td>0</td>
<td>1 (33%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (25%)</td>
<td>1 (25%)</td>
<td>1 (10%)</td>
<td>1 (10%)</td>
<td>0</td>
<td>0</td>
<td>4 (16%)</td>
<td>3 (12%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G3/4, grade 3 or grade 4 adverse event.
\(^a\) includes neutrophil count decreased; \(^b\) includes platelet count decreased; \(^c\) includes white blood cell count decreased
Table 4. Objective response rate and best response by RECIST 1.1 criteria

<table>
<thead>
<tr>
<th>n (%)</th>
<th>All ED SCLC patients (n=25)</th>
<th>ED SCLC patients at RP2D (n=6)</th>
<th>All other solid tumor patients (n=14)</th>
<th>Other solid tumor patients at RP2D (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective response, [95% CI]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmed complete response</td>
<td>1 (4%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Confirmed partial response</td>
<td>15 (60%)</td>
<td>5 (83%)</td>
<td>1 (7%)</td>
<td>1 (14%)</td>
</tr>
<tr>
<td>Best response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>1 (4%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Partial response</td>
<td>20 (80%)</td>
<td>6 (100%)</td>
<td>1 (7%)</td>
<td>1 (14%)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>3 (12%)</td>
<td>0</td>
<td>10 (71%)</td>
<td>5 (71%)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>0</td>
<td>0</td>
<td>1 (7%)</td>
<td>0</td>
</tr>
<tr>
<td>Incomplete data</td>
<td>1 (4%)</td>
<td>0</td>
<td>2 (14%)</td>
<td>1 (14%)</td>
</tr>
</tbody>
</table>

CI, confidence interval; ED SCLC, extensive-stage disease small cell lung cancer; RECIST, Response Evaluation Criteria in Solid Tumors; RP2D, recommended phase 2 dose of 240 mg veliparib twice daily as 14-day treatment.

Objective response = confirmed complete response + confirmed partial response
A Phase 1 Dose-Escalation Study of Veliparib Combined with Carboplatin and Etoposide in Patients with Extensive-Stage Small Cell Lung Cancer and Other Solid Tumors

Florence Atrafi, Harry JM Groen, Lauren Averett Byers, et al.

Clin Cancer Res Published OnlineFirst October 16, 2018.

Updated version
Access the most recent version of this article at:

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2018/10/16/1078-0432.CCR-18-2014.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2018/10/16/1078-0432.CCR-18-2014. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.