Title: Genomic signatures predict the immunogenicity of BRCA-deficient breast cancer

Authors and Affiliations: Adam A. Kraya¹*, Kara N. Maxwell²*, Bradley Wubbenhorst¹, Brandon M. Wenz¹, John Pluta¹, Andrew J. Rech², Liza M. Dorfman¹, Nicole Lunceford¹, Amanda Barrett³, Nandita Mitra⁷, Jennifer J.D. Morrissette⁴, Michael Feldman², Anupma Nayak³, Susan M. Domchek²,⁵,⁶, Robert H. Vonderheide²,⁵,⁶†, Katherine L. Nathanson¹,⁵,⁶†

¹Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA 19104

²Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104

³Division of Surgical Pathology, Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA 19104

⁴Division of Precision and Computational Diagnostics, Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA 19104

⁵Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA 19104

⁶Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA 19104

⁷Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104

*These authors contributed equally to this work

†These authors jointly supervised the work.

Running Title: Immunogenetic signatures of BRCA1/2 breast cancer

Keywords: Breast cancer, BRCA1/2, Immunogenetic signatures, LOH, HRD

Additional Information:

Financial support: Financial support for this work was provided by the National Institutes of Health (P30 CA016520), Basser Center for BRCA at the University of Pennsylvania (K.L.N., S.M.D., R.H.V.), Breast Cancer Research Foundation (K.L.N., S.M.D., R.H.V.), Susan G Komen
Foundation (S.M.D), Rooney Family Foundation (K.L.N., S.M.D.), National Institutes of Health (K12-CA076931, K.N.M.), Konner Family Foundation (K.N.M.), the Parker Institute for Cancer Immunotherapy (R.H.V., A.J.R, K.L.N.), the National Center for Advancing Translational Sciences of the National Institutes of Health (TL1TR001880) (A.A.K.) and the National Human Genome Research Institute of the National Institutes of Health (5T32HG009495 – 02) (A.A.K.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Corresponding Author:

Katherine L. Nathanson, MD
Room 356 BRB 2/3, 421 Curie Blvd
Perelman School of Medicine at the University of Pennsylvania,
Philadelphia, PA 19104
Phone: 215-573-9840, Fax: 215-573-6298
E-mail: knathans@upenn.edu

Conflict of Interest: Dr. Vonderheide reports having received consulting fees or honoraria from Apexigen, Celgene, Genentech, Janssen, Lilly, Medimmune, Merck and Verastem; he has received research funding from Apexigen, FibroGen, Inovio, Janssen, and Lilly.
Translational Relevance

Immune checkpoint blockade has been put forward as a potential treatment strategy in BRCA1/2 mutant breast cancers due to their genomic instability. However, only ~20% of advanced triple-negative breast cancers, the most common subtype of BRCA1 mutation-associated breast cancers, benefit from single-agent PD1/PDL1 therapy. This heterogeneity in response is likely due to variability in intrinsic immune infiltration. Here, we demonstrate that levels of homologous recombination deficiency (HRD) are inversely associated with immunogenicity in primary BRCA1/2 breast cancers, a phenotype further modulated by hormone receptor expression. As efforts in the clinic continue to advance combinations of immune checkpoint blockade, PARP1 inhibitors, and platinum chemotherapy for patients with BRCA1/2 mutation-associated cancers, our findings may help direct optimal trial design and interpretation.
Abstract

Purpose: Breast cancers with BRCA1/2 alterations have a relatively high mutational load, suggesting that immune checkpoint blockade may be a potential treatment option. However, the degree of immune cell infiltration varies widely and molecular features contributing to this variability remain unknown.

Experimental Design: We hypothesized that genomic signatures might predict immunogenicity in BRCA1/2 breast cancers. Using the Cancer Genome Atlas (TCGA) genomic data, we compared breast cancers with (89) and without (770) either germline or somatic BRCA1/2 alterations. We also studied 35 breast cancers with germline BRCA1/2 mutations from Penn using WES and immunohistochemistry.

Results: We found homologous recombination deficiency (HRD) scores were negatively associated with expression-based immune indices (cytolytic index (p=0.04), immune ESTIMATE (p=0.002), type II IFN signaling (p=0.002)), despite being associated with a higher mutational/neo-antigen burden, in BRCA1/2 mutant breast cancers. Further, absence of allele-specific loss of heterozygosity (LOH-negative; p=0.01) or sub-clonality (p=0.003) of germline and somatic BRCA1/2 mutations, respectively, predicted for heightened cytolytic activity. Gene set analysis found that multiple innate and adaptive immune pathways that converge on NFκB may contribute to this heightened immunogenicity. Immunohistochemistry of Penn breast cancers demonstrated increased CD45+ (p=0.039) and CD8+ infiltrates (p=0.037) and increased PDL1 expression (p=0.012) in HRD-low or LOH-negative cancers. Triple negative cancers with low HRD had far greater CD8+ T-cells (p=0.0011) and Perforin 1 expression (p=0.014) compared to hormone receptor-positive HRD-high cancers.

Conclusions: HRD scores and hormone receptor subtype are predictive of immunogenicity in BRCA1/2 breast cancers and may inform the design of optimal immune therapeutic strategies.
Introduction

Mutations in BRCA1 and BRCA2 are the most common causes of hereditary breast cancer. BRCA1 and BRCA2 play essential functions in maintaining genome integrity, primarily through their roles in homologous recombination (HR) and contribution to double strand DNA break repair (1). Breast cancers associated with germline BRCA1 and BRCA2 mutations have higher sensitivity to DNA damaging agents including platinum-based chemotherapy and inhibitors of poly(ADP-ribose) polymerase (PARP1), as HR is necessary for repair of DNA crosslinks (1). However, outcomes can vary widely across patients with germline BRCA1 and BRCA2 mutations receiving DNA damaging agents, which in part may be due to the varying degree of HR deficiency in these tumors. Secondary genetic alterations, particularly BRCA1/2 reversion mutations, lead to acquired resistance to these therapies, necessitating the investigation of alternative treatment strategies (2,3).

Tumors with somatic or germline defects in BRCA1/2 are hypothesized to be more immunogenic than tumors without genetic defects in the HR pathway, making them potential candidates for immune checkpoint blockade (4-7). BRCA1/2 mutation-associated breast cancers have been found to be more genomically unstable than tumors without such genetic alterations (2), with increased numbers of non-synonymous single nucleotide variants likely driving the heightened immunogenicity observed in these tumors (6,7). BRCA1/2 deficiency also has been associated with an immune activation signature (6), and histopathological analyses have found that the level of lymphocytic infiltrates is the strongest positive predictor for recurrence-free survival in BRCA1/2 mutation-associated breast cancer cases (6). Breast cancers with a DNA damage response-deficient phenotype, characterized by a 44-gene expression signature reflecting defects in the Fanconi Anemia (FA)/BRCA DNA repair pathway, have been shown to have higher CD4+ and CD8+ T cell infiltrates, likely driven by the release of chemoattractive cytokines through STING/TBK1/IRF3 signaling (5).
However, there is a wide range in immunogenicity observed in *BRCA1/2* mutation-associated breast cancers, and the molecular underpinnings of that variability have not been delineated (4-8). Although *BRCA1/2* deficient breast cancers are generally more immunogenic than sporadic cancers (8), a comprehensive histopathological analysis of *BRCA1/2* mutation-associated breast cancers found that greater than 50% were characterized by ‘absent/mild’ levels of tumor-associated lymphocytes (4). Immune metagene signatures that provide an RNA-based measure of immune cytotoxicity demonstrate that immune gene expression ranges widely among *BRCA1/2* deficient breast cancers (6). Further, triple negative breast cancers (TNBC), the most common tumor type associated with germline *BRCA1* mutations, have shown a clinical response rate to PD1 checkpoint blockade monotherapy of only 18.5% (9,10), underscoring the heterogeneity of *BRCA*-deficient breast cancers with respect to immunogenicity. Mouse models of Brca1 deficiency have also demonstrated that efficacy of CTLA4 and PD1 therapy in breast cancer may be dependent on concomitant treatment with DNA-damaging agents (7). A pan-cancer analysis of TCGA data found that the levels of genomic copy number variations (CNVs) inversely correlate with a cytotoxic immune signature and clinical benefit from immune checkpoint blockade (11). Given that *BRCA1/2* cancers are characterized by unique genomic scars driven by CNVs (2,3), this finding raises the question of whether mutational burden or CNV level might predominate in driving immunogenicity in *BRCA1/2* mutation-associated cancers.

Herein, we aimed to determine the underlying molecular features of immunogenicity in 115 *BRCA1* and *BRCA2* deficient breast cancers using genomic data from TCGA, and genomic and histopathological analyses in a validation cohort (n=35) from the Hospital of the University of Pennsylvania. We further aimed to stratify *BRCA1/2* breast cancer immunogenicity based on these features and understand the molecular processes underlying the immunogenic and non-immunogenic phenotypes.

Materials and Methods
Acquisition of Penn and TCGA Sequencing Datasets

Level 1 DNA sequencing data for breast tumors from TCGA were obtained by submitting a project request for approval by the National Center for Biotechnology Information Genotypes and Phenotypes Database (NCBI dbGaP) Data Access Request System Protocol #5309 “BRCA1 and BRCA2 mutations in breast and ovarian cancer”. Breast cancers with controlled-access Level 1 whole exome sequencing (WES) binary alignment map (*.bam) files were identified in the Genomic Data Commons (GDC) (https://gdc.cancer.gov/) (n=1098 breast tumors). After filtering samples without RNAseq data or that failed to pass our quality control pipeline (2), 859 breast tumor/normal *.bam files in total were subjected to downstream analysis. RNAseq v2 expression data and patient clinical data for breast invasive carcinoma (TCGA, provisional) were downloaded from cBioportal (http://www.cbioportal.org/). Tumors were categorized as Rec+ or as TNBC using primary data from the Santa Cruz Cancer Genetics Hub (Supplementary Table S1).

DNA sequencing data from a discovery study population ascertained from academic and community hospital sites within Penn Medicine were used for this analysis. Briefly, informed consent was obtained from each participant for use of their samples in genetic studies in an IRB-approved study. Patients with diagnosis of breast cancer and mutations identified though germline BRCA1/2 sequencing in a Clinical Laboratory Improvement Amendments (CLIA)-approved laboratory were eligible. As previously described (2), formalin-fixed paraffin-embedded (FFPE) tumor blocks were macrodissected, sectioned and stained with hematoxylin and eosin to ensure sections of over 70% invasive tumor. Tumors passing pathology quality control were dissolved in Deparaffinization Solution (Qiagen) and purified using Gentra PureGene Tissue Kit (Qiagen) following manufacturer’s protocols. DNA libraries were subjected to whole exome sequencing using the Agilent All-Exon Kit v5 (Santa Clara, CA), and matched tumor and normal sequencing data for 43 breast cancer patients (BRCA1, n=25; BRCA2, n=18) were used for HLA typing, described below.
Analysis of Penn and TCGA Whole Exome Sequencing Data

All WES data from TCGA tumors and matched germline were aligned to the hg38 assembly of the human genome. All WES data from Penn tumors and matched germline were aligned to the hg19 assembly of the human genome. Alignment data underwent initial quality control filtering according to GATK best practices. All exonic germline and somatic single nucleotide variants, and germline \textit{BRCA1} and \textit{BRCA2} mutations were identified and annotated as previously described (2). Exonic variants were annotated as somatic, if they had an alternate allele depth in germline of less than five reads and an alternate allele supported by greater than 10 reads in the tumor. Tumors were determined to be associated with germline \textit{BRCA1} and \textit{BRCA2} mutations if the germline allelic fraction (AF) >0.30 for the mutation, and the total depth was >30 in germline and tumor at the mutation locus. Only tumors with known pathogenic \textit{BRCA1} or \textit{BRCA2} mutations as per ENIGMA classification (43) were retained (Supplementary Table S1, S4). In total, we identified 35 breast tumors from the TCGA associated with germline \textit{BRCA1} (n=18) or \textit{BRCA2} (n=17) mutations with RNAseq data. We also studied 43 breast tumors with germline \textit{BRCA1} (n=25) or \textit{BRCA2} (n=18) mutations identified from Penn, 35 of which had available tumor for immunohistochemical staining (\textit{BRCA1}=23, \textit{BRCA2}=12).

Allele-specific LOH of the germline \textit{BRCA1}/\textit{2} mutation in the tumor was determined through a combination of Varscan2 (44), purity-adjusted allele frequency comparisons, and allele specific copy number calls as previously described (2). Briefly, estimates of tumor purity and ploidy were determined using Sequenza (45) for use in Varscan2 variant calling. Samples with a significant Varscan2 somatic p-value were assigned an allele-specific LOH positive status and those with a significant Varscan2 germline p-value were assigned an allele-specific LOH negative status. Sequenza was also used to call allele specific copy number states in the genomic region containing the \textit{BRCA1} or \textit{BRCA2} mutation. The copy number of the genomic region surrounding the germline \textit{BRCA1} or \textit{BRCA2} mutation (CN) and the number of mutant
alleles (m) were used to assign LOH states, including allele-specific LOH positive (CN=1, m=1; CN=2, m=2; or CN>2, m=2) and allele-specific LOH negative (CN=2, m=1; or CN>2, m=1) (Supplementary Table S1).

Using our mutation calling pipeline (2), level 3 RNAseq z-scores, microarray Z-scores, and HK27/HK450 methylation beta values from The Cancer Genomics Hub (https://cghub.ucsc.edu/) for the tumor/normal pairs, we identified 54 additional breast tumors with somatic alterations in BRCA1 or BRCA2 that met the following criteria: 1) presence of a deleterious or likely deleterious single nucleotide or insertion/deletion variant using our previously described variant annotation pipeline (2); 2) RNAseq z-score < -1.5 for BRCA1 expression (with HK450m>0.5 or data not available); and 3) BRCA1 or BRCA2 homozygous copy loss by Sequenza analysis (Supplementary Table S1). HR gene mutated breast cancers included those harboring: 1) deleterious or likely deleterious single nucleotide or insertion/deletion variants at other genes involved in HR (12) as defined in Supplementary Table S2) promoter methylation HK450m>0.25 with RNAseq<-1.5 for RAD51C; 3) PTEN homozygous copy loss or clonal mutation (12); and 4) EMSY high copy gain (12) (Supplementary Table S1, S2). Finally, tumors with no identifiable alteration in BRCA1/2 or other HR-related genes were classified as HR wild-type tumors. HRD scores were determined using custom R-scripts (2) and Sequenza (45), which assigned counts of non-telomeric allelic imbalance (NtAI), large state transitions (LST), and genomic LOH (2,3).

Determination of mutational burden, HLA types, and neoantigen load

All single nucleotide variants described in (2) were used to calculate mutational burden. We defined mutational burden as the number of non-synonymous somatic mutations per megabase of genomic DNA. We determined HLA genotypes from germline TCGA and Penn WES files using OptiType (46) requiring a minimal read depth of 40 at the HLA loci; clinical HLA typing in a subset of non-TCGA samples (n=7) showed complete concordance with OptiType.
calls (Supplementary Table S6). Neoantigen prediction was accomplished through NetMHCcons (47) called from the Immune Epitope Database Application Programming Interface (IEDB-API). All samples met the minimum read depth requirements and were retained for downstream analysis. Epitope lengths of 8, 9, and 10 were queried from FASTA files for each patient containing peptide sequences of length 15, 17, and 19, respectively. All neoantigens with a predicted IC$_{50}$<500 nM and a rank score of less than 2% were retained for comparisons across tumor groups.

Transcriptomics analysis of TCGA tumors

Cytolytic index for each tumor was computed as the geometric mean of PRF1 and GZMA expression from RNAseq v2 expression data downloaded from cBioportal (http://www.cbioportal.org/), as noted above. Inference of immune cell infiltration from TCGA RNA-Seq data was accomplished via the ‘estimate’ R package (14). ESTIMATE gives a measure of immune cell infiltration by performing single-sample gene set enrichment analysis (ssGSEA) based on an inferred immune signature. The immune signature represents the intersection between two gene sets: a leukocyte methylation signature gene set and genes enriched for high expression in normal hematopoietic cells.

Gene Set Variation Analysis (GSVA) was implemented via the ‘gsva’ Bioconductor package (48). All curated canonical pathways (C2) were downloaded from the Molecular Signatures Database (49) (http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CP), and GSVA scores were determined for all breast tumors. Immune metagene gene sets for GSVA were obtained from Rooney et al (13).

CD3, CD4, CD8, CD20, CD45, CD68, FoxP3, PRF1, and PDL1 Immunohistochemistry
Tissue microarrays for Penn breast BRCA1/2 tumors were prepared as previously described (2). Immunohistochemistry was performed using mouse monoclonal antibodies for CD3 (Leica Biosystems; Wetzlar, Germany; cat. PA0553), CD8 (Dako; Glastro, Denmark; cat. M7103), CD20 (Dako; Glastro, Denmark; cat. M0755), CD45 (Dako, Glastro, Denmark; cat. M0701), CD68 (Dako, Glastro, Denmark; cat M0814), FoxP3 (Biolegend; San Diego, CA; cat. 320102), and PRF1 (Leica Biosystems; Wetzlar, Germany; cat. NCL-L-Perforin), and a rabbit monoclonal antibody for PDL1 (Cell Signaling Technology; Danvers, MA; 15161 BF). Scoring for immunohistochemical stains was performed in triplicate for each sample, and normalized counts of CD3, CD8, and PRF1 positive cells were determined by board-certified pathologists (A.B., M.F., A.N.). PDL1 stain intensity was graded on a four-point scale (0-3) by board-certified pathologists (A.B., M.F.), with 0= no staining, 1= weak or partial staining, 2= moderate staining, 3= strong staining. PDL1 H-scores were computed for statistical comparisons across tumor subsets.

Masson’s Trichrome Staining

Masson’s trichrome staining was accomplished with a staining kit from Polysciences, Inc (Warrington, PA; cat. 25088). Tissue microarray sections were fixed in Bouin’s solution at 60°C and washed. Fixed sections were stained with the following reagents: Weigert’s Iron Hematoxylin, Beibrich Scarlet-Acid Fuchsin, Phosphotungstic acid, and Aniline Blue. At the conclusion of the staining protocol, all sections were rinsed with 1% acetic acid, dehydrated, and mounted for microscopy. Staining intensity was quantified by board-certified pathologists (A.N., M.F.) by grading on a four-point scale (0-3) of density and thickness for each trichrome stain (blue- collagen, red- myofibroblasts, black- nuclei). Density and thickness metrics were multiplied for each sample for statistical analysis.

Statistical Analysis
Median HRD-total scores were determined for BRCA1/2 (median=50.65), HR mutant (median=12.08), and HR wild type (median=-4.58) tumors and used as the basis for dichotomization for each group of tumors. P-values for correlation between gene expression and sample traits (HRD and allele-specific LOH status) were calculated via the two-sided Student’s t-test on log-normalized expression data. Normalized enrichment scores from GSVA were computed by setting ‘max.diff’ to ‘TRUE’, which provides a unimodal and approximately Gaussian distribution of enrichment scores (48). All linear statistical tests with GSVA scores were implemented via the ‘limma’ package in R (50). T-statistics were adjusted using an empirical Bayesian model, and p-values were adjusted using the Benjamini-Hochberg method. Cumulative hazard was compared using a Cox proportional hazards model to determine the effects of HRD level in breast patients, adjusting for stage, mutational burden, node positivity, and estrogen receptor expression status. Hazard curves were constructed in R using the ‘survival’ (https://CRAN.R-project.org/package=survival) package.

Data Availability

The WES data that supports this study have been deposited in the National Center for Biotechnology Information (NCBI)’s Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) with BioProject ID PRJNA38804 and can be accessed at: http://www.ncbi.nlm.nih.gov/bioproject/388048. The TCGA data is available from the National Cancer Institute’s Genome Data Commons (https://gdc.cancer.gov/). The remaining data are available within the article and its Supplementary Information files or available from the authors upon request.

Results

Association of homologous recombination deficiency (HRD) with mutational and neoantigen burden in TCGA breast cancers
We investigated immunogenicity in breast cancers from TCGA (Supplementary Fig. S1A), including those with germline or somatic alterations in *BRCA1* or *BRCA2*, in non-*BRCA1/2* genes involved in HR (12) (HR mutant tumors), and in those without alterations in genes involved in HR (HR wild type tumors; Supplementary Table S1, S2). Mutational burden was higher in breast cancers associated with mutations in *BRCA1/2* (p=0.006) and HR genes (p=8E-06; Fig. 1A) than HR wild type. *BRCA1* expression was significantly lower in cancers with germline or somatic *BRCA1* alterations (p=0.026), and expression of *BRCA2* was lower in cancers with *BRCA2* germline or somatic alterations with borderline significance (p=0.087, Supplementary Fig. S1B). We determined neoantigen load (Supplementary Fig. S1C), which was also higher among *BRCA1/2* mutation-associated (p=0.014) and HR gene mutation-associated (p=0.015) breast cancers than among WT tumors (Fig. 1B). Notably, neoantigen load was not significantly different when comparing *BRCA1* versus *BRCA2* mutant tumors, tumors with germline versus somatic mutations in *BRCA1* or *BRCA2*, or nascent versus whole genome amplified (WGA) DNA (Supplementary Figs. S1D, S1E, S1F); thus, all were combined into a single *BRCA1/2* tumor group for further analyses.

We determined the HRD score for each tumor (2,3), as described previously (2). We found that HRD score was higher among *BRCA1/2* mutation-associated versus HR gene mutation-associated (p=1.28E-09) or HR gene wild type breast cancers (p=3.03E-22) (Supplementary Fig. S1G). Dichotomizing tumors by median HRD score, we found that high HRD scores significantly correlated with increased neoantigen load amongst *BRCA1/2* (p=0.02) and HR gene mutation-associated breast cancers (p=0.016; Fig. 1C). Notably, HRD scores and estimated tumor ploidy also correlated with focal copy number variation (CNV) levels and chromosome/arm CNV levels, respectively, as computed in a pan-TCGA cancer analysis (11) (Supplementary Fig. S2A). *BRCA1/2* cancers with higher HRD tended to exhibit a greater degree of aneuploidy (HRD high mean ploidy = 3.6, HRD low mean ploidy = 3.1, p=0.047) than...
HRD low cancers. These data show that deficiency in the HR pathway is correlated with genomic instability and an increase in predicted neoantigens.

HRD and immunogenicity in TCGA breast cancers

To infer immunogenicity in BRCA1/2 mutation-associated breast cancers, we computed cytolytic index (13) as a measure of CD8+ T cell cytotoxicity and immune ESTIMATE scores (14) as a measure of lymphocyte infiltration. Neither immune measure differed between breast cancers with mutations in BRCA1 and BRCA2 nor germline versus somatic alterations (Supplementary Figs. S2B, S2C); hence, all tumors were combined for further analysis. We then investigated the association of these immune metrics with HRD level. Cytolytic index was higher in BRCA1/2 mutation-associated (p=0.0016) and HR gene mutation-associated (p=0.0019) than HR wild type breast cancers (Fig. 1D), consistent with prior reports that HR pathway deficiency leads to increased immunogenicity (4-7). Unexpectedly, when BRCA1/2 mutant breast cancers were dichotomized by median HRD score, higher HRD scores were associated with lower cytolytic index (p=0.043) and immune ESTIMATE score (p=0.002), despite correlating with a higher predicted neoantigen load (Figs. 1E, 1F). The magnitude of both immune metrics was independent of tumor stage (Supplementary Fig. S2D). Importantly, HRD high BRCA1/2 cancers more closely resembled HR wild type cancers (Cytolytic index: BRCA1/2 HRD high – 132.7, HR wild type – 118.5, p=0.56; Immune ESTIMATE score: BRCA1/2 HRD high – -2.7, HR wild type – 191.1, p=0.12). We also interrogated immune metagenes (13) by gene set variation analysis (GSVA) and found lower enrichment of the type II interferon (IFN) metagene (p=0.002, Fig. 1G) amongst HRD high BRCA1/2 mutation-associated breast cancers, suggesting lower immune effector activity in this tumor subset. HRD low breast cancers were also associated with a significantly lower death hazard ratio from cox proportional hazards analysis (p=0.03, Supplementary Fig. S2E).
To gain further insight into factors that may contribute to lower immunogenicity in HRD high BRCA1/2 mutated breast cancers, we compared all curated, canonical pathways (MSigDb) by gene set variation analysis (GSVA) (Supplementary Fig. S2F, Supplementary Table S3). Multiple pathways including Notch, tumor necrosis factor (TNF), and MAPK signaling linked to NFκB, a key transcription factor involved in CD28-mediated T-cell activation and the expression of chemoattractive T-cell cytokines (15,16), and were elevated across HRD low relative to HRD high tumors (Supplementary Table S3). Type I Interferon signaling, known to induce NFκB activation and elicit antitumor immune responses in lymphocytes (17), was up-regulated in HRD low tumors (p=1.44E-14). Pathways related to MAP-kinase-induced NFκB activation from toll-like receptors (p=8.89E-04, p=1.22E-03, p=1.25E-03), the pattern recognition receptors of innate immunity that play an important role in facilitating antigen-driven immune responses (18), were elevated in HRD low tumors, likely mediated by altered IKK signaling observed in this subset (p=0.013) (18) (Supplementary Table S3). Notch1 and Notch4 signaling, known to enhance CD4+ and CD8+ effector activity (19), also was elevated in HRD low tumors (p=7.98E-3, p=0.05, respectively), both of which are capable of activating NFκB canonical signaling (19).

Elevated TGF-beta signaling, observed in HRD low tumors (p=0.045), can induce NFκB via TAK1 (20). Further, the TNF pathway can activate NFκB specifically through the actions of TNFR1 and TNFR2 (21), both higher in HRD low tumors (p=0.011, p=0.016), and promote antitumor immune responses by amplifying T-cell receptor (TCR)-induced signals. NFκB activity can regulate the transcription of defensins and beta-defensins, small cationic peptides involved in tumor suppression as well as in T-cell chemotaxis (22), and defensin-related pathways were found at far higher levels in HRD low tumors (p=2.6E-36, p=7.5E-34). As STING (TMEM173) protein has been implicated in driving immunogenicity in DNA damage response-deficient (DDRD) breast cancers (5,23) and acts through NFκB (24), we also compared the expression of STING by HRD level and found that HRD low tumors expressed higher levels of STING than HRD high tumors (p=0.047, Supplementary Fig. S2G). These data collectively
suggest that low HRD BRCA1/2 breast cancers are associated with increased immunogenicity likely driven by NFκB signaling.

Effects of complete loss of wild type BRCA1/2 on breast cancer immunogenicity

Based on our prior work (2), we investigated whether allele-specific loss of heterozygosity (LOH) of the germline BRCA1 or BRCA2 mutation was predictive of immunogenicity in TCGA data. Allele-specific LOH was determined, as described previously (2), by comparing purity-adjusted mutation allele frequencies and copy number states across matched tumor and normal samples (see Methods). Breast cancers with allele-specific LOH of the BRCA1/2 germline mutation had significantly higher HRD score than tumors without allele-specific LOH (2). In the TCGA data set, we examined breast cancers associated with germline mutations in BRCA2 only, including those with (n=10, 59%) and without (n=7, 41%) allele-specific LOH. We found that allele-specific LOH associated with germline mutations in BRCA2 was associated with lower Type II IFN signaling, cytolytic index, and immune ESTIMATE scores (Fig. 2A; p=0.01, p=0.011, p=0.039, respectively). We observed a similar trend in breast cancers associated with germline BRCA1 mutations, though only one breast cancer in the TCGA cohort lacked allele-specific LOH of the BRCA1 mutation (Supplementary Fig. S3A).

Given that the difference in immunogenicity dependent on heterozygous versus homozygous germline BRCA1/2 mutations, we wanted to determine whether somatic BRCA1/2 mutation clonality also was associated with differences in immunogenicity. We categorized all breast cancers with somatic mutations in BRCA1/2 at a purity-adjusted allele frequency of less than 0.50 as subclonal (n=14) to compare to cancers with either clonal mutations (corrected tumor allele frequency [CTAF] >0.50), promoter hypermethylation of BRCA1, and/or low expression (RNAseq z-score <-1.5 of BRCA1 or BRCA2 [referred to collectively as ‘clonal’ BRCA1/2 somatic mutation-associated cancers] (n=33); Supplementary Table S1). We found that cancers with clonal BRCA1/2 mutations had higher mutational burden (p=0.05) and HRD scores.
(p=2.37E-07; Fig. 2B), but lower cytolytic index (p=0.0033) and immune ESTIMATE scores
(p=4.98E-05) than cancers with subclonal BRCA1/2 mutations (Fig. 2C). When evaluating
BRCA1 cancers alone, we found that subclonal BRCA1 alterations were associated with
borderline significantly higher cytolytic index (subclonal – n=4, mean cyt ind = 285.18; clonal –
n=4, mean cyt ind = 109.65; p=0.054) and significantly higher immune ESTIMATE scores
(subclonal –mean score = 1410.28; clonal –mean score = 71.81; p=0.022). BRCA2 cancers with
subclonal alterations exhibited borderline significantly higher cytolytic index (subclonal – n=10,
mean cyt ind = 329.60; clonal – n=12, mean cyt ind = 92.41; p=0.067), and immune ESTIMATE
scores (subclonal –mean score = 484.42; clonal –mean score = -227.48; p=0.079). As STING
can mediate inflammation through NFκB and IRF7 (24), both of which were elevated in cancers
with lower HRD, we then evaluated STING expression as a function of partial or complete loss
of BRCA1/2 function. We found that tumors with either BRCA1/2 LOH or clonal somatic
BRCA1/2 alterations had lower STING expression than tumors negative for BRCA1/2 LOH or
those with subclonal BRCA1/2 somatic mutations (p=0.04 and p=2.1E-04, Supplementary Fig.
S3B). Collectively, these data suggest that the disparity in immunogenicity as a function of HRD
in breast cancers is driven by full loss of BRCA1 or BRCA2 function, either by allele-specific
LOH of a germline mutation or clonality of a somatic mutation.

18

Immune infiltrates and T-cell effector activity in Penn BRCA1/2 breast cancers

We performed immunohistochemistry in breast cancers ascertained from Penn Medicine
patients with confirmed germline BRCA1 (n=23) or BRCA2 mutations (n=12) (Supplementary
Fig. S3C; Supplementary Table S1, S4). We stained for multiple immune cell markers spanning
adaptive and innate immune cell function including CD3, CD8, FOXP3, CD20, CD45, and CD68
in tissue microarray sections of BRCA1/2 breast cancers. T cells (CD3, CD8, FOXP3), B cells
(CD20), and cells of the myeloid lineage (CD68) were all detectable in our breast cancer set.
Intratumoral, stromal, and total CD8+ (p=0.0018, p=0.041, and p=0.037, respectively) T-cells
were lower in *BRCA1/2* breast cancers with elevated levels of HRD (Fig. 3A and 3B), consistent
with our results from our analysis of TCGA dataset, whereas no differences were observed in
other immune markers (Supplementary Fig. S3D). Differences in CD45+ T cells in association
with HRD level were more strongly associated with *BRCA1* mutation-associated cancers
(intratumoral, stromal, and total; p=0.032, p=0.043, and p=0.039, respectively) (Supplementary
Figs. S3E, S3F). We investigated the effects of allele-specific LOH associated with germline
mutations in *BRCA1* (LOH-positive, n=18, 78%; LOH-negative, n=5) and *BRCA2* (LOH-positive,
n=5, 42%; LOH-negative, n=7) cancers. No significant differences were observed across
CD3+, FOXP3+, and CD68+ cells when analyzing germline *BRCA1/2* cancers collectively by
allele-specific LOH status (Supplementary Fig. S3G). However, we found those that were
BRCA1/2 LOH positive (LOHpos) had a lower number of CD8+ T cells (intratumoral p=0.13,
stromal p=0.035, and total p=0.015), CD20+ B cells (intratumoral p=0.043, stromal p=0.223,
and total p=0.189), and CD45+ T cells (intratumoral p=0.002, stromal p=0.041, and total
p=0.037) (Figs. 3C, 3D). Again, these changes were more strongly associated with *BRCA1*
mutation-associated tumors; CD8+ (intratumoral p=7.03e-5, stromal p=0.0014, and total
p=0.00016), CD45+ (intratumoral p=0.00043, stromal p=0.00014, total p=8.0e-4), and CD20+
(intratumoral p=0.0345, stromal p=0.0038, and total p=0.0016) cells were all found at lower
levels in *BRCA1* allele-specific LOH positive cancers (Supplementary Fig. S3H). Further,
BRCA1 allele-specific LOH positive cancers specifically exhibited lower levels of CD3+
(intratumoral p=0.016, stromal p=0.0092, total p=0.0067) and CD68+ (intratumoral p=0.019,
stromal p=0.106, total p=0.140) cells (Supplementary Fig. S3H). Differences for all cell types in
BRCA2 cancers were non-significant (Supplementary Fig. S3I). We stained for the
programmed cell death protein ligand 1 (PDL1), a component of the dominant PD1-PDL1
immune checkpoint pathway induced by tumors to counter-regulate immune attack (25). We
found lower levels of macrophage membrane (p=0.048) and macrophage + tumor PDL1
(p=0.012) in cancers with allele-specific LOH relative to cancers without allele-specific LOH.
(Figs. 3E, 3F), indicating lower tumor inflammation (25). These changes were driven by BRCA1 cancers, whereby allele-specific LOH positive cancers had lower macrophage membrane (p=0.019) and total (tumor + macrophage, p=7.4e-4) PDL1 relative to LOH-negative cancers (Supplementary Fig. S3J). BRCA2 cancers trended in the same direction but failed to reach significance (Supplementary Fig. S3K).

Given that both TGF-beta and NFκB signaling were differentially regulated across HRD high versus HRD low tumors in TCGA cohort and given their known roles in remodeling the tumor microenvironment (26,27) (Supplementary Table S3), we investigated extracellular matrix composition by Masson’s Trichrome staining in the Penn cohort (28). We found lower red myofibroblast staining in HRD-high versus HRD-low tumors (p=0.0071, Figs. 3G and 3H).

Hormone receptor expression and HRD jointly stratify BRCA1/2 breast cancer immunogenicity

We analyzed the association between hormone receptor expression and immunogenicity in the background of BRCA1/2 alterations, as TNBCs have been found to be generally more immunogenic than hormone receptor positive (Rec+) cancers (6) (tumor types in Supplementary Table S1). Although there were no significant differences in cytolytic index and immune ESTIMATE within each hormone receptor subgroup based on BRCA1 or BRCA2 mutation status (Supplementary Fig. S4A), TNBCs had higher cytolytic index overall (p=0.025, Fig. 4A) despite a similar mutational burden (Supplementary Fig. S4B). An expression level comparison of immunomodulatory genes across TNBCs and Rec+ BRCA1/2 mutant breast cancers found that TNBCs had higher expression of most immune markers than Rec+ tumors, suggesting a more inflamed microenvironment (25) (Fig. 4B). Inflamed tumors often express counter-regulatory checkpoint proteins such as PDL1 to evade immune attack (25). In Penn BRCA1/2 germline mutation-associated breast cancers, membrane PDL1 was higher in TNBCs when summing with tumor and macrophage membrane PDL1 (p=0.035, Fig. 4C).
We sought to investigate a potential interaction effect between HRD and hormone receptor statuses, performing a stratified comparison in \textit{BRCA1/2} TCGA tumors. Comparing cytolytic index and immune ESTIMATE in TCGA, we found the greatest difference between TNBC HRD-low (n=10) and Rec+ HRD-high \textit{BRCA1/2} breast cancers (n=22, p=0.0013, Figs. 4D, 4E). Similarly, when partitioning by \textit{BRCA1/2} allele-specific LOH status and hormone receptor expression, we found that TNBC, LOH-negative cancers had the highest cytolytic index (n=2, mean cytolytic index = 303.1) at a borderline significantly higher level than Rec+, LOH-positive cancers (n=8, mean cytolytic index = 97.7, p=0.052), and Rec+, LOH-negative and TNBC, LOH-positive had middling levels of cytolytic index (mean cytolytic index = 143.6 and 156.4, respectively). We confirmed these observations in Penn \textit{BRCA1/2} germline mutation-associated breast cancers; LOH-positive cancers had significantly higher HRD score than LOH-negative cancers (Supplementary Fig. S4C, p=6.65e-6). TNBC, LOH-negative (n=4) cancers had the highest CD8 infiltrate when compared to TNBC, LOH-positive (n=14; intratumoral p=9.22e-5, stromal p=0.0063, total p=0.0023) and Rec+, LOH-positive (n=8; intratumoral p=0.00051, stromal p=0.0016, total p=0.0011) cancers, but non-significantly higher than Rec+, LOH-negative (n=8; intratumoral p=0.13, stromal p=0.088, total p=0.13) cancers (Supplementary Fig. S4D). The same observations were found when comparing TNBC, LOH-negative to LOH-positive CD3+ and CD45+ infiltrates (CD3: intratumoral p=0.00024, stromal p=0.038, total p=0.0012; CD45: intratumoral p=0.022, stromal p=0.0022, total p=0.0020), Rec+, LOH-positive (CD3: intratumoral p=0.00073, stromal p=0.014, total p=0.0068; CD45: intratumoral p=0.025, stromal p=0.011, total p=0.010), and Rec+, LOH-negative (CD3: intratumoral p=0.068, stromal p=0.069, total p=0.066; CD45: intratumoral p=0.021, stromal p=0.041, total p=0.044) cancers (Supplementary Figs. S4E and S4F). Further, the number of PRF1-positive cells in the tumor microenvironment was highest in TNBC, LOH-negative cancers relative to TNBC, LOH-positive (p=0.024), Rec+, LOH-negative (p=0.014), and Rec+, LOH-negative (p=0.021) cancers (Supplementary Fig. S4G). TNBC, LOH-negative membrane also...
had the highest levels of membrane and total PDL1 when compared to TNBC, LOH-positive (macrophage membrane $p=0.015$, tumor+macrophage membrane $p=0.039$, total $p=0.034$) and Rec+, LOH-positive cancers (macrophage membrane $p=0.012$, tumor+macrophage membrane $p=0.028$, total $p=0.013$), but not Rec+, LOH-negative cancers (macrophage membrane $p=0.28$, tumor+macrophage membrane $p=0.055$, total $p=0.814$) (Supplementary Fig. S4H).

Comparing all differentially regulated canonical pathways between these two groups in the TCGA (Supplementary Fig. S4I, Supplementary Table S5), we found that pathways related to T cell receptor, chemokine, and PD1 signaling were the most positively up-regulated in TNBC HRD-low tumors ($p<0.005$). Collectively, these data suggest that HRD and hormone receptor expression independently stratify immunogenicity and, when considered jointly, can more precisely categorize the immune properties of $BRCA1/2$ breast cancers.

Discussion

We have delineated the molecular properties of immunogenicity in breast cancers associated with $BRCA1/2$ alterations (Fig. 4F); our observations have potential implications for treatment of these cancers with checkpoint blockade. $BRCA1/2$-mutation associated breast cancers exhibited slightly higher mutational load and predicted neo-epitopes compared to wild type tumors – features that were most prominent among the HRD-high subset; however, our findings now reveal that it is the HRD-low subset of breast cancers in this cohort that are the most highly immunogenic with the strongest evidence of CD8-driven T cell responses. Thus, $BRCA1/2$-related breast cancers represent another example in which mutational burden and T cell responses are not linked (29,30); rather, tumor intrinsic features (31,32) that regulate immune response and suppression are increasingly appreciated as driving forces. Further, our findings are consistent with a pan-cancer analysis which found that aneuploidy and a higher prevalence of large somatic copy number alterations, a feature of HRD, were associated with
lower immune cytotoxicity, possibly due to these genomic events imparting dysfunction in cellular machinery involved in the recruitment of immune cells (11).

Immunogenicity in BRCA1/2 breast cancers as a function of HRD may be related to multiple pathways that contribute to dendritic and T-cell function (Notch, TNF, and TLR signaling) that converge on NFκB (21), a key proinflammatory transcription factor known to influence the transcription of genes involved in survival, inflammation, and lymphocyte activation (15) and shown to promote immune surveillance by augmenting the anti-tumor responses of T-cells (16). As NFκB signaling is influenced by DNA damage and BRCA1/2 mutation status (33-36), our data collectively indicate that both tumor cell intrinsic (BRCA1/2 and HRD) and extrinsic signals (TNF and TLR signaling) may determine NFκB activity and in turn immunophenotypes in BRCA1/2 mutation-associated breast cancers. HRD-low cancers also exhibited heightened TGF-beta signaling, which is known to promote trans-differentiation of fibroblasts to myofibroblasts, a prominent feature of the HRD-low tumor microenvironment in our investigation (27). Myofibroblasts have previously been associated with sites of inflammation and their depletion has been associated with loss of T-cell effector cells, as we observed (37,38).

Further, an NFκB positive feedback loop has been shown to maintain activated myofibroblasts in breast tumors through interleukin 6 (IL-6) (39), a pathway which was elevated in HRD low tumors (Supplementary Table S3). Collectively, these data underscore that the inflammation and heightened immune infiltrates observed in HRD low tumors may be driven by NFκB, which may promote the presence of stromal myofibroblasts potentially via TGF-beta and IL-6 signaling.

Our study also highlights the relationship between partial or complete loss of BRCA1/2 function and immunogenicity in patients with germline BRCA1/2 mutations. Loss of the non-mutated wild type allele in breast tumors associated with BRCA1 or BRCA2 germline mutations has been commonly reported (40). We have found that absence of BRCA locus-specific LOH is more frequent than previously thought, particularly in association with BRCA2 germline...
mutations, and that patients with absence of allele-specific LOH in their ovarian cancers have significantly poorer survival when treated with adjuvant platinum therapy and thus may drive intrinsic resistance to this therapy (2). In the current study, we found that breast cancers associated with BRCA1/2 germline mutations without allele-specific LOH were characterized by a higher cytotoxic CD8+ T-cell infiltrate, elevated markers of cytolytic activity, and increased macrophage membrane PDL1. Moreover, tumors with subclonal somatic mutations in BRCA1/2 also were more immunogenic than those with clonal somatic mutations. These associations were particularly pronounced in BRCA1-deficient cancers when analyzed separately, with generally similar trends observed in BRCA2-deficient cancers, suggesting that breast cancers without allele-specific LOH of the germline BRCA1/2 mutation or demonstrating subclonality of somatic BRCA1/2 mutations may be more intrinsically responsive to immune checkpoint blockade. While our findings have important implications for the treatment of breast cancers with BRCA1 and BRCA2 alterations, whether patients with low HRD may preferentially respond to immune checkpoint blockade will require direct evaluation in the clinic.

Importantly, hormone receptor expression, previously found to independently influence immunogenicity (6), further stratified tumor immune properties. HRD-low TNBC tumors were the most immunogenic subset characterized by high PD1-PDL1 and T-cell receptor signaling, whereas HRD high receptor positive tumors were the least immunogenic.

Overall, our study addresses a pressing clinical need to understand the potential causes of heterogeneity in response to immune checkpoint blockade in breast cancer patients with high-penetrance germline BRCA1/2 mutations or with somatic alterations in BRCA1/2. Our data are consistent with prior reports that BRCA1/2 mutation-associated tumors are generally more immunogenic than BRCA1/2 wild type tumors (4-7), and we build on this work by accounting for the wide range in immunogenicity observed in BRCA1/2 tumors (4) through molecular stratification, which can offer key therapeutic insights. Our study further demonstrates that clinically available molecular genetic testing, namely assessment of tumor HRD, BRCA1/2
allele-specific LOH, and somatic BRCA1/2 clonality, coupled with hormone receptor status can be used to stratify breast cancer immunogenicity. As BRCA1 and BRCA2 mutations are associated with many other cancer types including ovarian and aggressive prostate cancer, our findings may have applicability beyond breast cancer. Although our study is one of the largest BRCA1/2 breast tumor analyses to date, a larger sample size would be invaluable to further understand differences in BRCA1 versus BRCA2 tumor immunity. While our study did not specifically address cancers emerging from germline non-BRCA1/2 HR germline mutations, the evidence to date suggests that such tumors are quite diverse in that some are similar to BRCA1/2 mutation-associated tumors and display ‘BRCAness’ (e.g. PALB2) whereas others are not BRCA-like (e.g. CHEK2, ATM) (41,42). Breast cancers associated with each gene would have to be profiled in equivalent numbers to our BRCA1/2 mutation-associated cancers, which is outside the scope of the current study.

In sum, the results of our study give novel insights into the relationship between HRD and immunogenicity in breast cancers associated with BRCA1/2 alterations, which can potentially guide treatment strategies utilizing DNA damaging agents and checkpoint blockade alone or in combination.
Acknowledgements: We thank the patients that participated in our studies. We further thank E. John Wherry, PhD (University of Pennsylvania) for helpful comments on the manuscript.
References

Figure Legends

Figure 1. Deficiency in homologous recombination (HR) pathway confers increased mutational and neoantigen load but decreased immunogenicity in *BRCA1/2* mutation-associated breast cancer. In TCGA, A, Number of exonic non-synonymous single nucleotide variants (nsSNVs) per 50 megabases (Mb) in *BRCA1/2* mutation-associated (n=71), HR mutant (n=91), and HR wild type (n=485) breast tumors. B, Neoantigen load by HR mutation status. C, Neoantigen load by HR mutation status dichotomized by median HRD score. D, Cytolytic index across *BRCA1/2* mutation-associated (n=89), HR mutant (n=118), and HR wild type (WT) (n=652) tumors. E, Cytolytic index by median HRD level and *BRCA1/2* mutation status. F, Immune ESTIMATE score by median HRD level and *BRCA1/2* mutation status. G, GSVA comparison of type II interferon (IFN) signaling metagene by median HRD level in *BRCA1/2* mutation-associated tumors. Error bars, s.e., *p<0.05, **p<0.01, Student’s t-test.

Figure 2. Germline *BRCA2* allele-specific loss of heterozygosity (LOH) and clonal somatic *BRCA1/2* mutations correlate with lower immunogenicity in TCGA breast cancer. A, Type II interferon (IFN) signaling, cytolytic index, and immune ESTIMATE score by *BRCA2* allele-specific LOH (LOHpos, n=7; LOHneg, n=10). B, Mutational burden and homologous recombination deficiency (HRD) score by somatic *BRCA1/2* mutation clonality (subclonal, n=14; clonal, n=33). C, Cytolytic index and immune ESTIMATE score by somatic *BRCA1/2* mutation clonality (subclonal, n=14; clonal, n=33). Error bars, s.e. *p<0.05; **p<0.01, Student’s t-test.

Figure 3. Germline *BRCA1/2* allele-specific loss of heterozygosity (LOH) and high HRD predict for lower tumor inflammation. In Penn *BRCA1/2* tumors, A, levels of CD45+ and CD8+ immune cells by HRD level (high, n=17; low, n=18). B, Representative CD45 and CD8 immunohistochemistry (IHC) images by HRD status, 10X, scale bar represents 0.1mm at 0.01mm increments. C, Levels of CD8+, CD20+, and CD45+ immune cells by LOH status (LOHpos, n=23; LOHneg, n=12). D, Representative CD8+, CD20+, and CD45+ IHC images by LOH status, 40X, scale bar represents 0.1mm at 0.01mm increments. E, PDL1 H-score by...
germline BRCA1/2 LOH status (LOHpos, n=23; LOHneg, n=12). F, Representative PDL1 immunohistochemistry images, 20X, scale bar represents 0.1mm at 0.01mm increments. G, Masson’s Trichrome (acid fuschin) score by HRD level (high, n=14; low, n=12). H, Representative Masson’s Trichrome stained sections highlighting red myofibroblasts, 20X. *p<0.05; **p<0.01, Student’s t-test. Error bars, s.e.

Figure 4. Triple negativity and low homologous recombination deficiency (HRD) scores are features of immunogenic BRCA1/2 breast tumors. In TCGA tumors, A, Cytolytic index by receptor status (triple negative breast cancer, TNBC, n=30; hormone receptor positive, Rec+, n=53). B, In TCGA tumors, immune-related gene expression by receptor status (TNBC, n=30; Rec+, n=53). C, In Penn tumors, PDL1 H-score by receptor status (TNBC, n=18; Rec+, n=15) and representative PDL1 immunohistochemistry images, 20X. In TCGA tumors, interaction effect of receptor status and HRD level on D, cytolytic index and E, immune ESTIMATE score (HRD High Rec+, n=22; HRD Low Rec+, n=31; HRD High TNBC, n=20; HRD Low TNBC, n=10). F, Model of immunogenicity illustrating the relative impact of receptor status, HRD, and allele-specific LOH of germline mutations in BRCA1 and BRCA2. *p<0.05, **p<0.01, Student’s t-test.
Figure 1.
Figure 2.

A

Germline BRCA2

B

Somatic BRCA1/2

C

Somatic BRCA1/2
Figure 3.

A

B

C

D

E

F

G

H
Figure 4.

A

Cytoplytic Index
Rec+ TNBC

B

Correlation with H-score PDL1

C

H-Score PDL1

D

HRD Low/allele-specific LOH negative

E

Immune ESTIMATE

F

HRD high/allele-specific LOH positive

Most immunogenic:
1CD8
↑↑↑cytolytic index
↑↑↑Immune infiltrate
↑↑↑PDL1

Immunogenic:
1CD8
↑↑cytolytic index
↑Immune infiltrate
↑PDL1

Least Immunogenic:
1CD8
↓cytolytic index
↓Immune infiltrate
↓PDL1

BRCA1/2-deficient breast cancers

BRCA1

BRCA2

HR+ TNBC

HR- TNBC

Rec+ TNBC

Rec+ TNBC

Rec+ TNBC

Rec+ TNBC

Rec+ TNBC

Clinical Cancer Research

Genomic signatures predict the immunogenicity of BRCA-deficient breast cancer

Clin Cancer Res Published OnlineFirst March 26, 2019.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-18-0468

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2019/03/26/1078-0432.CCR-18-0468.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2019/03/26/1078-0432.CCR-18-0468. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.