Tumor cell IDO enhances immune suppression and decreases survival independent of tryptophan metabolism in glioblastoma

Lijie Zhai, April Bell, Erik Ladomersky, Kristen L. Lauing, Lakshmi Bollu, Brenda Nguyen, Matthew Genet, Miri Kim, Peiwen Chen, Xinlei Mi, Jennifer D. Wu, Matthew J. Schipma, Brian Wray, John Griffiths, Richard D. Unwin, Simon J. Clark, Rajesh Acharya, Riyue Bao, Craig Horbinski, Rimas V. Lukas, Gary E. Schiltz, Derek A. Wainwright

Affiliations: 1Department of Neurological Surgery at Northwestern University Feinberg School of Medicine, Chicago, IL; 2Department of Neurological Surgery at Loyola University Chicago Medical Center, Maywood, IL; 3Department of Preventive Medicine at Northwestern University Feinberg School of Medicine, Chicago, IL; 4Department of Urology at Northwestern University Feinberg School of Medicine, Chicago, IL; 5Department of Microbiology-Immunology at Northwestern University Feinberg School of Medicine, Chicago, IL; 6Department of Medicine-Hematology/Oncology at Northwestern University Feinberg School of Medicine, Chicago, IL; 7Department of Preventive Medicine at Northwestern University Feinberg School of Medicine, Chicago, IL; 8Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9NQ, United Kingdom; 9Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom. 10University Eye Clinic, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, Germany; 11Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, 72076, Germany; 12Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK; 13University of Pittsburgh Hillman Cancer Center; 14Department of Medicine at University of Pittsburgh School of Medicine, Pittsburgh, PA; 15Department of Pathology at Northwestern University Feinberg School of Medicine, Chicago, IL; 16Department of Neurology at Northwestern University Feinberg School of Medicine, Chicago, IL; 17Department of Chemistry at Northwestern University, Evanston, IL; 18Department of Pharmacology at Northwestern University Feinberg School of Medicine, Chicago, IL; 19Robert H. Lurie Comprehensive Cancer Center at Northwestern University Feinberg School of Medicine, Chicago, IL

Running title: Non-metabolic IDO enhances immune suppression in GBM.

Keywords: Complement, kynurenine, glioblastoma, regulatory T cell, myeloid derived suppressor cell, CCL2, CCR2.

Word count (including Abstract, Introduction, Materials and Methods, Results, and Discussion): 6,973

Conflict of Interests Disclosure:
RDU and SJC are inventors named in patent applications that describe the use of complement inhibitors for therapeutic purposes and the use of circulating complement protein measurement for patient stratification. They are also co-founders of and shareholders in Complement
Therapeutics, a company which focuses on the development of complement targeted therapeutics, primarily for Age-related Macular Degeneration.

Acknowledgements: This work was supported in part by National Institutes of Health (NIH) grants R01NS113425 (L.C.P.), R01NS102669 (C.H.), P50CA221747 (L.C.P., R.V.L., C.H., P.K., D.A.W.), R01NS097851 (D.A.W.), K02AG068617 (D.A.W.), UK Medical Research Council facilitated by the Manchester NIHR Biomedical Research Centre and the Greater Manchester Comprehensive Local Research Network MR/P025838/1 and MR/M008959/1 (J.R.G., R.D.U., S.J.C.), BrainUp grant 2136 (R.V.L. and D.A.W.), and American Cancer Society RSG-21-058-01 - CCE (D.A.W.).

Corresponding author:
Derek A. Wainwright, Ph.D.
Department of Neurological Surgery
Laboratory of Brain Aging, Cancer Immunology, and Immunotherapy
303 East Superior Street, Chicago, IL 60611
Simpson Querrey Biomedical Research Center, Room 6-527
Office #: (309)236-8525; Lab #: (312)503-5168
Northwestern University Feinberg School of Medicine
Phone: (312) 503-3161, Fax: (312) 503-3552
Email: Derekwainwright@northwestern.edu
ABSTRACT

Purpose: Glioblastoma (GBM) is an incurable primary brain tumor that has not benefited from immunotherapy to-date. Greater than 90% of GBM expresses the tryptophan (Trp) metabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO). This observation supported the historical hypothesis that IDO suppresses the antitumor immune response solely through a mechanism that requires intratumoral Trp depletion. However, recent findings led us to investigate the alternative hypothesis that IDO suppresses the anti-GBM immune response independent of its association with Trp metabolism.

Experimental Design: IDO-deficient GBM cell lines reconstituted with IDO wild-type or IDO enzyme-null cDNA were created and validated in vitro and in vivo. Microarray analysis was conducted to search for genes that IDO regulates, followed by the analysis of human GBM cell lines, patient GBM and plasma, and the TCGA database. Ex vivo cell co-culture assays, syngeneic and humanized mouse GBM models were used to test the alternative hypothesis.

Results: Non-enzymic tumor cell IDO activity decreased the survival of experimental animals and increased the expression of complement factor H (CFH) and its isoform, factor H like protein 1 (FHL-1) in human GBM. Tumor cell IDO increased CFH and FHL-1 expression independent of tryptophan metabolism. Increased intratumoral CFH and FHL-1 levels were associated with poorer survival among glioma patients. Similar to IDO effects, GBM cell FHL-1 expression increased intratumoral Tregs and MDSCs while it decreased overall survival in mice with GBM.

Conclusions: Our study reveals a newly non-metabolic IDO-mediated enhancement of CFH expression and provides a new therapeutic target in patients with GBM.
TRANSLATIONAL RELEVANCE

Since the ECHO-301 phase III clinical trial results were reported, questions have been raised as to why IDO enzyme inhibition fails to improve the survival of patients with cancer. In the current study, we addressed this question and confirmed that tumor cell IDO possesses activities that extend beyond tryptophan metabolism and suppress the anti-cancer immune response. This study discovered that non-metabolic IDO increases the expression of immunosuppressive complement factor H (CFH) expression and in-turn, suppressed the anti-tumor immune response and decreased the survival of experimental animals with brain tumors. High intratumoral CFH levels were associated with a substantial decrease in glioma patient survival. These findings help elucidate our understanding of clinical trial results that have targeted IDO enzyme activity to-date and provide a new target for improving immunotherapeutic efficacy in patients with malignant glioma.
INTRODUCTION

Glioblastoma (GBM) is the most common malignant primary central nervous system (CNS) cancer in adults (1). Despite an aggressive standard of care treatment that includes maximal surgical resection when possible, followed by tumor-targeted radiation and chemotherapy with temozolomide (TMZ), the prognosis remains dismal. Median survival for GBM is 14.6 months (2) with a five-year overall survival (OS) of ~4.7% in the United States (3). These grim statistics provide compelling rationale to develop more effective treatments for patients with GBM.

Immune checkpoint blockade and chimeric antigen receptor (CAR) T cell treatment have improved the lifespan of patients diagnosed with select advanced cancers (4). Patients with GBM are among the malignancies that are uniquely unresponsive to cancer immunotherapy and have yet to benefit from this approach in accordance with all phase III clinical trials to-date (5-7). A contributing factor to the immune resistance of GBM cells is indoleamine 2, 3-dioxygenase 1 (IDO) that is frequently expressed in wild-type isocitrate dehydrogenase (IDH) GBM (8). IDO is canonically characterized as a rate-limiting immunosuppressive enzyme that converts the essential amino acid, tryptophan (Trp), into downstream metabolites that are collectively referred to as kynurenines (Kyn) (9). Tumor cell expression of IDO increases the intratumoral accumulation of immunosuppressive regulatory T cells (Tregs; CD4^+CD25^+FoxP3^+) and decreases overall survival in experimental mice with brain tumors (10). Although GBM cells do not normally express IDO, its expression is induced by tumor-infiltrating T cells (11). Higher levels of GBM-infiltrating T cells are therefore associated with higher intratumoral IDO expression levels and an associated decreased overall survival of GBM patients. (11, 12). Since IDO is expressed among a wide variety of adult cancers (13), pharmacologic enzyme inhibitor treatment approaches have been evaluated for their potential to improve cancer patient survival outcomes (14, 15). There have been no
objective survival benefits noted among randomized clinical trials evaluating this approach in patients with aggressive cancer to-date (16). This may be due to a combination of factors including (i) a requirement to inhibit IDO and other immunosuppressive pathways simultaneously (17, 18), (ii) age-dependent increases of IDO that are unresponsive to pharmacologic enzyme inhibition (19), and/or (iii) immunosuppressive IDO effects that are independent of its association with acting as a tryptophan metabolic enzyme (20).

Previous work in mice demonstrated that Tregs accumulate in IDO-expressing brain tumors despite the treatment with a potent blood brain barrier-penetrating pharmacologic IDO enzyme inhibitor (18). Also unexpectedly, IDO-mediated Trp metabolism was predominantly mediated by non-GBM cells rather than by the tumor cells in the brain (21). These findings collectively challenge the historical hypothesis that tumor cell IDO increases Tregs and decreases survival through a mechanism that solely depends on Trp metabolism and motivated us to explore the alternative hypothesis that GBM cell IDO suppresses antitumor immunity independent of its enzyme function(s).
MATERIALS AND METHODS

Patient samples

Peripheral blood from GBM and aneurysm patients were collected from the Northwestern Central Nervous System Tissue Bank (NSTB). Plasma samples were stored at -80°C until batch analysis. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque (GE Healthcare) density gradient separation and stored in liquid nitrogen prior to initiating co-culture experiments. Snap-frozen tissue from surgically-resected GBM were collected from the NSTB. All tumors were diagnosed according to WHO diagnostic criteria by Dr. Craig Horbinski, M.D./Ph.D. Detailed information for patient tissue samples used in this study is provided in Supplementary Table 1.

The cancer genome atlas (TCGA) sample description

The TCGA data for all cancer types analyzed in the current study were accessed from the UCSC Xena browser (http://xena.ucsc.edu/). RNA expression data assayed by RNASeq (Illumina Hi-seq platform) includes RSEM normalized level 3 data that is present in the TCGA as of April 13th, 2017. DNA methylation data were extracted from the same TCGA dataset. TCGA GBM gene expression data by AffyU133a array analysis were acquired from the UCSC Xena browser.

Glioblastoma cell lines and Patient-derived GBM xenografts (PDXs)

The human malignant glioma cell line U87 stably expressing luciferase (U87), the human IDO-overexpressing U87 cells (IDO-OE U87), and the mouse IDO^−/−tGBM cell line were created and maintained as previously described (11, 22, 23). To generate the mIDO-overexpressing tGBM cell lines, a lentiviral vector that expresses mIDO-mGFP fusion protein was purchased from Origene (catalog# CW303099). To obtain lentiviral vector encoding enzyme-null mIDO, site
Mutagenesis of His350 into Ala was performed on the wild-type mIDO-mGFP lentiviral vector using QuickChange II Site-directed Mutagenesis kit (Agilent Technologies, catalog# 200523) following the product protocol. Mutagenic primers were designed by the online QuickChange Primer Design Program (www.agilent.com/genomics/qcpd) and sequence information was provided in Supplementary Table 2. A GFP lentiviral vector, pCDH-CMV-MCS-EF1-copGFP-T2A-Puro (System Biosciences, Cat# CD513B-1) was provided by the Northwestern University SBDRC Gene Editing, Transduction and Nanotechnology (GET iN) Core as a control vector. The lentiviral vector that expresses FHL-1-mGFP fusion protein was purchased from Origene (catalog# CW304772). All vectors were sequenced before applied for viral packaging and cell transduction. Lentiviral particles were generated by transfecting 293FT cells with the lentiviral expression vector and packaging vectors following routine protocol at the SBDRC Gene Editing, Transduction and Nanotechnology (GET iN) Core which is supported by NIH award P30AR075049. IDO−/−GBM cells were transduced with the lentiviral particles at a ratio of 5 infectious units of virus per cell in the presence of 8 μg/mL polybrene for 6 hours. The transduced cells were further selected by fluorescence-activated cell sorting (FACS) based on the GFP intensity. Cells within the top 1% GFP intensity were enriched for subsequent experiments.

IDO-deficient U87 cells (IDO-KO U87) were generated by the Applied StemCell Inc. using CRISPR-CAS9 technique. Briefly, human IDO guide RNAs targeting the exon 8 of human IDO gene were designed at CRISPR design web tool (Deskgene and CRISPOR) with at least three mismatches for NGG PAM sites. The crRNA-tracrRNA duplex were prepared by mixing equimolar concentration of Alt-R crRNA, Alt-R tracrRNA and ATTO 550 (catalog# 1075298; Integrated DNA Technologies) followed by heating at 95°C for 5 min and slowly cooled to room temperature. To prepare the Cas9/RNP complex, the crRNA-tracrRNA duplex and Alt-R S.p Cas9
nuclease V3 (catalog# 1081059; Integrated DNA Technologies) were gently mixed and incubated at room temperature for 20 min. U87 cells were resuspended in SE nucleofection buffer (SE cell Line 4D-Nucleofector X kit L; V4XC-1024, Lonza) and incubated with Cas9/RNP complex at room temperature for 2 min and electroporated using a 4D nucleofector (4D-Nucleofector Core Unit: AAF-1002B; Lonza, 4D-Nucleofector X Unit: AAF-1002X, Lonza). 48 hours after transfection, cells were trypsinized and resuspended in phosphate-buffered saline (PBS) having 1% fetal bovine serum (FBS) and sorted by FACS based on ATTO signal intensity. After 7-14 days culture or formation of visible cell clones, genomic DNA were extracted and subject to PCR. The PCR products were then Sanger-sequenced to identify clones that would result in frameshift mutation. IDO knockout at both mRNA and protein levels were confirmed by analyzing parental and IDO-KO U87 cells using RT-PCR and Western blotting, respectively.

The glioma cells from patient-derived GBM xenografts (PDX) were provided by the laboratory of Dr. C. David James at the Northwestern University and prepared as previously reported (24, 25).

Except for the PDXs-derived human GBM cells, all the other cell lines used in this study were tested for mycoplasma prior to analysis and cultured in the DMEM/F12 medium (ThermoFisher Scientific, catalog# 11320) supplemented with 10% FBS and 100 units/ml penicillin as well as 100 μg/ml streptomycin under 5% CO2 incubation condition unless described for specific experiments.

Animal and tissue preparation

Humanized mice reconstituted with human immune cells (NSG-SGM3-BLT), NOD.CB17-Prkdc^{scid}/J (NOD-scid) mice, CrTac:NCr-Foxn1^{nu} mice were used as previously described (11). Cre⁺IDO^{-/+-}tGBM mice were previously generated (21) by crossing transgenic mice that
spontaneously develop glioblastoma after intraperitoneal injections of tamoxifen (26) with B6.129-Ido1tm1Alm/J (Jackson Laboratories). Mice were maintained under specific pathogen–free conditions in the Northwestern University Center for Comparative Medicine. For T cell depletion experiments, 200 μg anti-mouse CD4 (clone YTS191; BioXCell), 200 μg anti-mouse CD8 (clone YTS169.4; BioXCell) and 200 μg anti-mouse NK1.1 (clone PK136; BioXCell) were administered by intraperitoneal (i.p.) injection 3 days prior to and every 3 days after tumor cell engraftment up to 30 days after intracranial injection or at the declared experimental endpoints. Rat IgG2b (clone LTF-2, BioXCell) and mouse IgG2a (clone C1.18.4, BioXCell) were administrated at the same concentration and dosing schedule as for the leukocyte-depleting antibodies. For orthotopic brain tumor mouse modeling, 3 × 10^5 tGBM or patient-derived xenograft (PDX) cells were intracranially-engrafted similar to previous studies (27). PDX tumor tissue was kindly provided by Dr. C. David James at the Northwestern University, from continuously propagated patient-resected GBM that was subcutaneously engrafted into nude mice. Mice were euthanized at the indicated time point(s). Brain tumor and non-tumor contralateral brain hemisphere tissue was collected, dissected, and washed in ice-cold phosphate-buffered saline (PBS), frozen in liquid nitrogen, and stored at -80°C until analysis or processed for other techniques. Procedures for all mouse experiments were reviewed and approved by the Institutional Animal Care and Use Committee at Northwestern University and were in compliance with national and institutional guidelines.

Co-culture assays

For the tGBM cell-splenic monocyte co-culture, monocytes were isolated and enriched from mouse spleens using EasySep™ Mouse CD11b Positive Selection Kit (Catalog# 18970,
STEMCELL) according to the product protocol. Viability of the isolated cells was typically > 90% as seen by trypan blue staining. CD11b+ cells were seeded onto 12-well plate at a density of ~ 1.5 x 10^6 per well and cultured in RPMI-1640 medium supplemented with 10% heat-inactivated FBS, 100 mg/ml streptomycin, 100 U/ml penicillin, 10 ng/ml mouse recombinant IL-2 (R&D System, catalog# 402-ML-020) over night. The next day non-attached cells were removed and adherent cells were washed once with PBS and incubated in fresh RPMI-1640 medium as described above for another 5 days. After counting the macrophages, tGBM cells were seeded on a 0.4μm Transwell insert at 1:1 ratio and placed into the 12-well plate for co-culture of 48 hours. At the end of co-culture, tGBM cells and some macrophage cells were lysed using RNA Lysis Buffer from the PureLink RNA Mini Kit (Thermo Fisher Scientific, catalog# 12183020) and stored at -80°C for RT-PCR. The remaining macrophages were washed with PBS containing 5mM EDTA and gently de-attached by cell scrapers followed by twice washing with PBS containing 2% FBS, then subject to flow cytometry analysis. Conditioned media from the co-culture were collected and filtered through a 40-um cell strainer and stored at -80°C for HPLC analysis. The co-culture of U87 cells with patient PBMCs-derived T cells was performed as described in our previous study (11).

Hematoxylin and eosin (H&E) staining and Immunohistochemistry (IHC)

Brain tumors were dissected and fixed in 10% (w/v) neutral buffered formalin for 24~72 hours. Formalin-fixed tissues were processed into paraffin blocks and sectioned at a thickness of 4μm. After deparaffinization, antigen retrieval was performed using sodium citrate pH6 buffer. The slides were incubated in decloaking chamber (Biocare Medical) at 110°C for 5 minutes; rinsed in distilled water 2 times and in 1x phosphate buffered saline (PBS) for 5 minutes, then incubated
with anti-mGFP antibody (Origene, catalog# TA150122) (1:5000 dilution) in antibody diluent, overnight at 4°C. After rinsing with Tris-Buffered NaCl Solution with 0.1% Tween 20 (TBST), sections were further incubated with HRP-labelled anti-rabbit secondary antibody (BioCare Mach2 #RHRP520MM) for 1 hour. Slides were then washed for 3 minutes. Immunohistochemical reactions were visualized using a DAB substrate (DAKO). Tissue sections were counterstained with hematoxylin Gill II (Surgipath), mounted in the xylene based mounting medium, and visualized under a light microscope. Both H&E and IHC images were taken using a CRI Nuance camera on Zeiss Axioskop microscope at the Northwestern University Center for Advanced Microscopy Core. Histology services were provided by the Northwestern University Research Histology and Phenotyping Laboratory supported by NCI P30-CA060553.

Microarray analysis

The microarray analysis was carried out at the Northwestern University NUSeq Core Facility using the human transcriptome analysis system, Clariom™ D Assay (Thermo Fisher Scientific). Briefly, 1x10^5 cells per well of U87 cells or IDO-OE U87 cells were seeded on 12-well plate. After attachment, cells were transfected with human IDO-specific siRNA at a final concentration of 20 nM (GE Health Dharmacon) using either Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific, catalog# 13778030) or jetPRIME siRNA transfection reagent (Polyplus-transfection). The sequences of hIDO siRNA duplex are given in Supplementary Table 2. 16~18 hours after siRNA transfection, U87 cells were further incubated for another 48 hours with or without human recombinant IFNγ (Shenandoah Biotechnology, SKU# 100-77-100ug) at a concentration of 100 ng/ml. After the incubation, cells were lysed using RNA Lysis Buffer from the PureLink RNA Mini Kit (Thermo Fisher Scientific, catalog# 12183020) and stored at -80°C.
The IDO-OE U87 cells were transfected with human IDO-specific siRNA for 24 hours then subject to cell lysis as described above. The above experiment was repeated twice at different time points. Total 36 samples (6 groups x 2 duplicate x 3 repeats) were subject to the microarray analysis. Total RNA was quantified with a NanoDrop 3000 then further evaluated by a Bioanalzyer. Only samples with a RIN value ≥9.0 were used for downstream analysis. The RNA selected was amplified and hybridized using the GeneChip® WT PLUS Reagent Kit (Thermo Fisher Scientific, USA) and further analyzed by the GeneChip® Scanner 3000 platform (Thermo Fisher Scientific, USA).

The Affymetrix Transcriptome Analysis Console (TAC Version 4.0.2, Thermo Fisher Scientific) was used for normalization, summarization, and quality control of the resulting microarray data using the signal space transformation-robust multi-array average (SST-RMA) algorithm. Analysis of variance (ANOVA) empirical Bayes (eBayes) method using adjusted statistical p-values (p<0.05; fold change ±2), was used for determination of the differentially expressed genes within the TAC console. The eBayes method which is suitable for small sample sizes, uses moderated t-statistics, where instead of the global or single gene estimated variances, a weighted average of the global and single-gene variances is used (28). 65 genes were identified as the most differentially expressed genes by IDO siRNA treatment between U87 cells and IDO-OE U87 cells (Supplementary Table 3). Two genes without a curated gene symbol (Supplementary Table 3) associated with the Affymetrix probe set were excluded from downstream analyses. Gene expression pattern and KM analysis of these 63 genes were further compared to those of GBM IDO using the GlioVis online data portal (https://gliovis.shinyapps.io/GlioVis/). Pearson’s correlation was also performed between mRNA level of each of these 65 genes with that of IDO using the TCGA GBM RNaseq data (as described in Methods). After the above screening, 4 genes showing highest correlation with IDO were identified, MYADM, GADD45A, TSPAN4, and CFH,
of which only CFH shows the correlative expression with IDO as confirmed by the real-time RT-PCR analysis. The microarray data have been deposited in SRA and the accession number is GSE175700

(https://urldefense.com/v3/__https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175700__;!!Dq0X2DkFhyF93HkjWTBQKhk!Bep13fF052qW8RRWldy7Muamf9MI8NMyGQJ8RTGR18jcBVqEAn7xY5YD8fm4gu4C6Qp1vwES).

Western blotting

For cultured cell samples, media were removed, and cells were lysed in ice-cold RIPA buffer supplemented with 1x Halt protease/phosphatase inhibitor cocktail (Thermo Fisher Scientific). For GBM tissue samples, ~50 mg tissue sample was homogenized in the above protein lysis buffer using the gentleMACS Dissociator (Miltenyi Biotec) following product protocol. The protein lysate was centrifuged at 12,600 x g for 15 min, the supernatant was stored at -80°C for further analysis. Protein concentration was measured by the bicinchoninic acid assay (Thermo Fisher Scientific). Equal amounts of protein were loaded in pre-cast Mini-PROTEAN TGX Stain-Free gels (Bio-Rad). After electrophoresis, protein was transferred the PVDF membrane followed by blocking in 5% (w/v) non-fat milk in 1x TBST for one hour, then probed with primary antibodies: anti-mGFP antibody (Origene, catalog# TA150122) (1:1000 dilution), anti-hIDO (Cell Signaling Technology, clone: D5J4E) (1:1000 dilution), anti-FH/FHL-1 antibody (Origene, clone: OTI5H5, catalog# TA804532) (1:1000 dilution), anti-GAPDH (Cell Signaling Technology, clone: 14C10) (1:1000 dilution) overnight at 4°C. After 5 times washing with 1x TBST, membrane was incubated with donkey anti-rabbit/goat IgG antibodies conjugated with horseradish peroxidase (Jackson ImmunoResearch Inc.). The blotting membrane was then incubated with SuperSignal
West Pico/Femto ECL substrate (Thermo Fisher Scientific) and visualized on ChemiDoc (BioRad).

Flow cytometry

Flow cytometry was performed as previously described (27). All the conjugated antibodies were purchased from eBioscience and detailed information is given in **Supplementary Table 2.** Fc Blocking Ab (catalog # 14-9161-73), anti-mouse CD16/CD32 (catalog # 14-0161-82), fixation/Permeabilization concentrate (catalog# 00-5123-56), fixation/Permeabilization diluent (catalog # 00-5223-56), and permeabilization buffer (catalog# 00-8333-56) were also purchased from eBioscience. Cytometry data were acquired on a BD LSRFortessa 6-Laser flow cytometer and analyzed on Flowjo 6 software. This work was supported by the Northwestern University – Flow Cytometry Core Facility supported by Cancer Center Support Grant (NCI CA060553).

RNA isolation and real-time RT-PCR

Total RNA was extracted from freshly dissected tissue samples and cultured cells using the Trizol Reagent and PureLink RNA Mini Kit (Thermo Fisher Scientific), respectively. 1 µg of total RNA was reverse transcribed into mRNA using iScript cDNA Synthesis Kit (Bio-Rad). Quantitative real-time PCR was performed on a CFX96 Touch Real-Time PCR Detection System using the default program setting (Bio-Rad). The sequences for all PCR primers are listed in the **Supplementary Table 2.** The relative quantitation of gene expression was calculated using the 2-ΔΔCT method (29) with normalization of the target threshold cycle (CT) values to the internal housekeeping gene (GAPDH).
Trp and Kyn analysis by high performance liquid chromatography (HPLC)

Procedures for HPLC sample processing and analysis have been previously described (30).

Mass spectrometry quantification of CFH and FHL-1

We previously described how to evaluate plasma levels for CFH and FHL-1 (31). Briefly, plasma samples were thawed and vortexed, and a 5µl aliquot taken and diluted with 90 µl 50mM ammonium bicarbonate, 2 µl of 1% (w/v) ProteaseMax (Promega, Southampton, UK) and 1 µl 500mM dithiothreitol. This was incubated at 56°C for 25 min to reduce cysteine residues. 3 µl 500mM iodoacetamide was then added and sample incubated in the dark for a further 15min. To digest the protein, a further 43 µl of 50mM ammonium bicarbonate and 1 µl ProteaseMAX solution was added alongside 5 µl of 1 µg/ µl endoproteinase Glu-C (Roche, Mannheim, Germany). Sample was mixed and digested for 16 hours at 25°C. Digested samples were spiked with heavy-labelled synthetic peptide standards (FH: VTYKCFE; FHL-1: NGWSPTPRCIRVSFTL, each containing S-carboxymethylated cysteine and heavy labelled amino acids at the underlined residues) (Cambridge Research Biochemicals, Cambridge, UK) to a final concentration of 47.6 pg/µl for the FH and 0.95 pg/µl for FHL-1. Peptides were dried in a centrifugal evaporator and resuspended in 50 µl 0.1% (v/v) trifluoroacetic acid. 4µL of this peptide solution was analysed - providing final on-column standard peptides loads of 200 fmol FH and 2 fmol FHL-1 peptides, respectively. Peptides were separated using an Agilent 1200 series liquid chromatography system with a C18 column (250 mm x 2.1 mm I.D., Thermo Scientific Acclaim 120, 3 µm particle size) at 50 °C. Peptides were eluted using a gradient elution increasing from 5% acetonitrile to 25%. The flow rate was maintained at 250 µL/min with an initial composition of 5% Buffer B (acetonitrile with 0.1% (v/v) formic acid). The following gradient elution profile was used to separate the peptides (time:
%acetonitrile): 0 min: 5%; 2 min: 5%; 3 min: 12%; 12 min: 15%; 15 min: 20%; 30 min: 25%; 31 min: 90%; 39 min: 90%; 40 min: 5%; 49 min: 5%. Eluted peptides were detected using an Agilent 6595 triple quadrupole mass spectrometer in SRM mode monitoring three transitions per peptide as shown in Supplementary Table 4. Data were extracted using Skyline software (https://skyline.ms/) and protein concentration was calculated by comparison of peak areas between the heavy labelled standard peptides and its endogenous counterpart.

Cell proliferation assay

2000~3000 tGBM cells per well were seeded on 96-well plate. Cell growth at different time points were measured using the Cell Counting Kit 8 (abcam, catalog# ab228554) following the product protocol. Absorbance at 460 nm was measured using a Synergy™ 2 multi-mode microplate reader (BioTek).

Statistical analysis

The cutoff value for gene expression levels were determined with Cutoff Finder software (http://molpath.charite.de/cutoff/) using significance as the cutoff optimization method (32). Kaplan-Meier (KM) survival analysis was performed to estimate the survival distribution, while the Bonferroni-corrected, Mantel-Cox, or Gehan-Breslow-Wilcoxon log-rank tests were used to assess the statistical significance of differences between the stratified survival groups using GraphPad Prism (version 9, GraphPad Software, Inc., La Jolla, CA). Renyi family of test statistics was computed via SAS software (version9.4, SAS Institute Inc.,Cary, NC) to determine the survival difference between two groups given the presence of crossing hazard rates. Pearson’s correlation was used to analyze the relationship between each two genes’ mRNA expression level.
Canonical-correlation analysis (CCA) was performed using `concor()` function in R package CCR. F-approximations of Wilks' Lambda was used to test the statistical significance of canonical correlation coefficients, using `p.asym()` function in R package CCP. Comparisons between multiple groups were analyzed by One-way ANOVA using GraphPad Prism software. Differences were considered to be statistically significant when $P < 0.05$. Standard error of the mean (SEM) is presented as the error bar in all bar graphs and mean ± SEM was utilized to describe the data throughout the text unless specifically noted.
RESULTS

Tumor cell IDO increases immune suppression through non-enzyme activity

To determine if GBM cell IDO possesses non-enzyme activity, we bred B6.129-Ido1^{tm1Alm}/J (Ido^{−/−}) mice with GFAP(ERT²)→Cre;p53^{fl/fl};Rb^{fl/fl};pTEN^{fl/fl} mice (26) to generate an IDO-deficient tamoxifen-inducible transgenic mouse model of GBM (IDO^{−/−}tGBM; Fig. 1A; upper left). Tumor tissue was isolated from the mouse brain and disseminated into single cells (IDO^{−/−}tGBM cells) until growing at a rate of exponential proliferation, in vitro (Fig. 1A; upper right). Since the amino acid sequence for the mouse and human IDO enzyme active site is conserved (33), site directed mutagenesis was performed on a wild-type mouse IDO-mGFP cDNA fusion construct such that the derivative protein would change from a histidine to an alanine at the 350th amino acid (H350A). IDO^{−/−}tGBM cells were then transduced with either an empty plasmid vector (Vector^{EMPTY}), a vector expressing wild-type murine IDO cDNA (IDO^{WT}), or a vector expressing the IDO enzyme null cDNA (IDO^{H350A}) (Fig. 1A; lower left). Fluorescence microscopy (Fig. 1A; lower right), real-time RT-PCR, Western blotting, and high-performance liquid chromatography (HPLC) for tryptophan (Trp) and kynurenine (Kyn) confirmed that both IDO^{WT}- and IDO^{H350A}-modified IDO^{−/−}tGBM cells express IDO mRNA and protein as compared to the Vector^{EMPTY}-expressing IDO^{−/−}tGBM cells that are absent for IDO expression (Fig. 1B). The modified IDO^{WT}-expressing IDO^{−/−}tGBM cells show a significant increase of Kyn accumulation as compared to both the Vector^{EMPTY}- and IDO^{H350A}-expressing IDO^{−/−}tGBM cells. The expression of IDO has no effect on the proliferation of IDO^{−/−}tGBM cells, in vitro (Fig. 1B, right most panel). These data validate the successful reconstitution of IDO-deficient tumor cells with constructs expressing enzymatically active or enzymatically null IDO protein.
We next characterized the \textit{in vivo} role of VectorEMPTY, \textit{IDO}WT, and \textit{IDO}H350A-expressing IDO-tGBM cells after their intracranial injection into syngeneic IDO-tGBM mice (\textbf{Fig. 1A}). Mice with intracranial IDOWT- and IDOH350A-expressing tumors have decreased overall survival with a median overall survival (mOS) of 67.5 days and undefined as compared to mice with VectorEMPTY-expressing tumors, respectively (\textbf{Fig. 1C}). The percentage of mortalities due to IDOWT and IDOH350A are not different from one another ($P = 0.294$). To further address whether the survival difference is caused by IDO-mediated immunosuppression, this experiment was repeated in IDO-tGBM mice treated with CD4^+T- and CD8^+T-cell depleting antibodies. T cell depletion decreases survival as compared to mice that are not depleted for those leukocytes with the fastest mortality rates in mice with intracranial VectorEMPTY and IDOH350A-expressing tGBM cells (\textbf{Fig. 1C}). Similar survival effects are also found in IDO-tGBM mice with modified tumor cells and depleted for T cells and NK cells (\textbf{Supplementary Fig. 1}). The phenotype of tumor infiltrating lymphocytes at 4 weeks post-injection show a similar increase of Treg levels in IDOWT-expressing (25.06 \pm 6.67\%) and IDOH350A-expressing (25.05 \pm 4.03\%) brain tumors as compared to mice engrafted with VectorEMPTY-expressing tumors (5.89 \pm 3.25\%, $P<0.05$) (\textbf{Fig. 1D}). The expression of IDO is stable in both the IDOWT- and IDOH350A-expressing brain tumors as compared to the VectorEMPTY-expressing tumors that are absent for IDO expression \textit{in vivo} (\textbf{Supplementary Fig. 2}). The \textit{in vitro} co-culture of both the IDOWT- and IDOH350A-expressing tumor cells with splenic CD11b$^+$ monocytes induce a greater number of CD11b$^+$Ly6c$^+$Ly6glow mature macrophages at 18.25 \pm 0.65\% and 18.9 \pm 1.4\%, respectively (\textbf{Fig. 1E}) as compared to only 12.45\% \pm 0.55 among macrophages co-cultured with VectorEMPTY-expressing tumor cells ($P < 0.01$) (\textbf{Fig. 1E, left panel}). The effects on macrophage differentiation are tumor cell IDO-dependent and tryptophan metabolism-independent (\textbf{Fig. 1E, right panel}).
IDO enhances complement factor H expression in human GBM cells

Since Fig. 1 collectively demonstrated that IDO enzyme activity does not fully account for its associated immunosuppressive and maladaptive effects in subjects with IDO-expressing glioma cells, we next questioned the mechanism by which IDO facilitates non-enzyme-mediated effects. Utilizing the Clariom D microarray platform, unmodified human U87 GBM cells were either left untreated or treated with human interferon-gamma (IFNγ) and/or human IDO siRNA. A human U87 GBM cell line expressing wild-type human IDO cDNA that we previously described (11) was also treated with or without human IDO siRNA and all samples were analyzed collectively (Fig. 2A, top left). PCA analysis confirms the experimental reproducibility among the treatment conditions that were performed at different times and confirm the intra-group molecular similarity and inter-group molecular differences. Sixty-three gene candidates were identified based on their similar pattern of gene expression with IDO (Fig. 2A Venn diagram). Complement factor H (CFH) has the closest correlation with IDO gene expression changes in human GBM cells (Fig. 2A, bottom right). Quantitative RT-PCR confirms the IFNγ-dependent increase of CFH expression, and in contrast, the decreased expression of CFH when IDO expression is either absent or inhibited with IDO-specific siRNA (Fig. 2B). The IDO-mediated enhancement of CFH expression is independent of Trp metabolism since the treatment of U87 cells with the IDO enzyme inhibitor we previously characterized, BGB-5777 (18), has no effect on CFH expression levels in U87 (Fig. 2B) and PDX43 (Fig. 2C) GBM cells. In contrast, the inhibition of CFH expression has no effect on IDO expression levels (Fig. 2D). Since previous work showed that human GBM-infiltrating T cells induce IDO expression in vitro and in vivo (11, 34), CFH expression levels were analyzed in human immune system-reconstituted humanized mice with intracranial human PDX43.
and in patient-resected human GBM. Similar to intratumoral IDO and CD3ε levels, human CFH expression is absent in PDX43 when engrafted into humanized mice that are co-depleted for human CD4+ and CD8+ T cells (Fig. 2E). Notably, the presence of IDO, CD3ε, and CFH are detectable in both newly-diagnosed and recurrent patient-resected GBM. These data collectively suggest that while tumor cell IDO and CFH are increased through a mechanism that depends on human tumor-infiltrating T cells, maximal CFH expression potential requires IDO-dependent tryptophan metabolism-independent effects.

IDO and CFH demonstrate similar patterns of expression in patient-resected GBM and correlate with glioma patient survival

Based on the similar patterns of IDO and CFH expression in the established human U87 GBM cell line (Fig. 2B) and in human PDX43 GBM (Fig. 2C), we next explored whether such a relationship exists in patient-resected GBM. Fig. 3A shows TCGA analysis of IDO and CFH mRNA levels, both of which progressively increase with glioma grade and are maximally expressed in GBM. Pearson’s correlation analysis indicates that CFH and IDO mRNA levels positively correlate in patient-resected GBM (r=0.3962, \(P < 0.0001 \)) as well as when all grades of glioma are analyzed simultaneously (r=0.549, \(P < 0.0001 \)) (Fig. 3B). Kaplan-Meier analysis further demonstrates that higher CFH mRNA levels are inversely associated with glioma patient survival (Fig. 3C) and predictive of a faster rate to GBM recurrence (Fig. 3D). Intra-glioma CFH expression is also affected by isocitrate dehydrogenase (IDH) status such that a higher level of CFH expression is observed among wild-type IDH (wtIDH)-expressing tumors (within grade II gliomas, \(P = 0.0037 \); within grade III gliomas, \(P < 0.0001 \); within GBM, \(P = 0.0056 \) (Fig. 3E)). CFH methylation for the cg23557926 locus is significantly different among grade II and grade III wtIDH and mutant IDH.
(mIDH)-expressing glioma \((P < 0.0001) \) but is not significantly different within GBM (Fig. 3F). Consistent with the analysis of humanized mice with intracranial PDX43 (Fig. 2D), GBM samples with a higher mRNA profile indicative of CD8\(^+\) T cells (CD3E, CD8A) possess significantly higher levels of CFH and IFN\(\gamma\) expression \((P < 0.01) \) (Fig. 2D, Fig. 3G). To further understand the relationship of human T cells with IDO and CFH in human GBM, the co-culture of either naïve or activated T cells, conditioned media from activated T cells, and/or the treatment of anti-IFN\(\gamma\) was assessed in cultures of U87 GBM cells. Fig. 3H demonstrates that activated human T cells and the associated conditioned media containing human IFN\(\gamma\) directly induce both IDO and CFH gene expression. This observation was further extended with the \textit{in vitro} culturing of U87, PDX12, PDX39, and PDX43 treated with or without human IFN\(\gamma\) (Fig. 3I). Under all conditions, IFN\(\gamma\) increased CFH expression in human GBM. Collectively, the data indicate that IDO and CFH coordinate increase in patient-resected glioma, that higher CFH expression is inversely associated with glioma patient survival regardless of tumor grade, and that IFN\(\gamma\)-expressing GBM-infiltrating T cells enhance the expression of intratumoral CFH levels.

IDO enhances CFH isoform expression

The human CFH gene locus is on chromosome 1q32 in the regulators of complement activation (RCA) gene cluster. CFH encodes for an \(\sim 155 \) kDa secreted glycoprotein comprised of 20 contiguous complement control protein (CCP) modules (Fig. 4A, top panel) and a truncated splice variant referred to as factor H like protein 1 (FHL-1) that encodes a second isoform composed of CCPs 1–7 followed by a unique 4-amino acid sequence (Fig. 4A, lower panel) (35). Analysis of the TCGA indicates that both the full-length CFH and truncated CFH variant, FHL-1, positively correlate with IDO (Fig. 4B) and the T cell surface marker, CD3\(\varepsilon\) (Fig. 4C), in patient-resected
Both CFH isoforms are present in tumor lysate isolated from fresh patient-resected newly diagnosed GBM or recurrent GBM (Fig. 4D, left panel). Protein expression for CFH and FHL-1 is also expressed in cell culture supernatants but not in intracellular U87 GBM cell lysate and is higher after treatment with IFNγ (Fig. 4D, right panel). To further elucidate the dynamic mRNA expression of both CFH transcript variants as they relate to IDO levels over time, primers were designed for targeting the different CFH variants including the full-length variant by targeting CCPs 10-11 and the truncated variant by targeting the unique 4-amino acid sequence (Fig. 4A). IDO mRNA expression is detectable as early as 4 hours after treatment with IFNγ. In contrast, the earliest that the full-length and truncated CFH variants increased is at 12-hours post-IFNγ treatment in U87 (Fig. 4E, top row) and PDX43 (Fig. 4E, bottom row) GBM cells. The protein expression kinetic profile (Fig. 4F) is similar to the mRNA profile (Fig. 4E). To confirm that IDO possesses a direct regulatory effect on CFH expression, we created a homologously IDO-deleted U87 (IDOKO U87) cell line using the CRISPR-Cas9 gene editing approach (Fig. 4G). Whereas unmodified U87 treated with IFNγ expresses IDO protein and metabolizes Trp into Kyn, IDOKO U87 fails to express IDO protein and does not metabolize tryptophan. Strikingly, while IDO and both CFH splice variants are induced and upregulated after treatment with IFNγ in unmodified U87, respectively, no such increase takes place in IDOKO U87 cells (Fig. 4H). These data collectively confirm that upon stimulation with the T cell effector cytokine, IFNγ, the increase of CFH splice variant expression levels is dependent on the co-expression of IDO in human GBM cells.

Tumor cell CFH isoform expression enhances intratumoral immune suppression and decreases survival in a syngeneic brain tumor model
To better understand the downstream effects of IDO-enhanced tumor cell CFH expression, IDO-/tGBM cells were engineered to express the truncated CFH splice variant, FHL-1 cDNA (Fig. 1A). The co-culture of FHL-1-expressing tumor cells with splenic CD11b+ macrophages leads to a maximal expression of ARG1, CCL2, and IL-6 in macrophages as compared to VectorEMPTY-expressing cells that are co-cultured with macrophages or in macrophages cultured alone (P < 0.05, Fig. 5A). FHL-1 expression also directly increases ARG1 and CCL2 levels in tumor cells (Fig. 5B) suggesting that FHL-1 binds to at least one receptor on macrophages and on tumor cells for carrying out its immunosuppressive gene reprogramming effects. The intracranial injection of FHL-1 cDNA-expressing IDO-/tGBM cells into syngeneic IDO-/tGBM mice leads to 100% mortality and a mOS of 33 days that is significantly lower than mice with brain tumor cells expressing the VectorEMPTY (P < 0.0001) (Fig. 5C). The survival benefit of mice with tumor cells expressing VectorEMPTY and treated with a non-specific IgG antibody is reduced to a mOS of 20.5 days when T cells and NK cells are co-depleted (P < 0.0001) (Fig. 5D). The decreased mOS of 35 days in mice with tumors expressing FHL-1 cDNA treated with non-specific IgG antibodies is also reduced to a mOS of 17 days in mice co-depleted for T and NK cells. Flow cytometric analysis of brain tumors isolated at 3 weeks post-intracranial injection show a marked decrease of tumor infiltrating CD8+ T cells (45.17% ± 3.78% versus 17.52% ± 1.72%, P < 0.001), an increase of Tregs (12.23% ± 2.79% versus 29.23% ± 3.535, P < 0.01), and an increase of total MDSCs (CD3-CD45-CD11b+Ly6C+) (6.98% ± 1.56% versus 17.71% ± 2.80%, P < 0.01) that primarily reflected monocytic-type MDSCs (M-MDSCs: CD11b+Ly6G-Ly6Chi) in FHL-1-expressing tumors as compared to tumors expressing VectorEMPTY (Fig. 5E). Gene expression analysis of FHL-1-expressing brain tumors isolated at 3 weeks post-intracranial injection showed an immunosuppressive signature with increases of ARG1, CCL2, IL-6, and Foxp3 expression as
compared to VectorEMPTY-brain tumors ($P<0.01$), as well as to contralateral non-tumor brain ($P<0.05$) ([Fig. 5F](#)). Collectively, the data show that when IDO-deficient brain tumor cells are genetically engineered to express a CFH variant, the resulting cells potently increase intratumoral immune suppression and decrease overall survival.

Circulating and intratumoral CFH correlations in patients with GBM

Since the two CFH isoforms are normally found in human plasma (35), we next compared the protein levels for the full length and truncated CFH variants in non-tumor aneurysm- and age-matched GBM-patient plasma. [Fig. 6A](#) shows the systemic levels of CFH at 865 nM ± 37.42 nM and 788 nM ± 43.85 nM in plasma from aneurysm and GBM patients, respectively. It further shows the systemic levels for FHL-1 at 20.67 nM ± 1.34 nM in aneurysm patients that is decreased to 14.69 ± 1.39 nM in GBM patients ($P<0.05$). The ratio of CFH:FHL-1 is also decreased in GBM patients as compared to the aneurysm control group ($P<0.05$, [Fig. 6A](#)). No difference was observed regarding systemic CFH and FHL-1 levels when comparing the plasma of newly diagnosed and recurrent GBM patients ([Fig. 6B](#)). Intratumorally, CFH expression positively correlates with mRNA levels for many other immunosuppressive modulators including PD-L1, PD-L2, PD-1, CTLA-4, LAG3, BTLA, and FGL2 in GBM ([Fig. 6C](#)). Notably, CFH also broadly correlates with mRNA signatures for infiltrating leukocytes. The data collectively suggest that there is a unique profile of CFH variant expression in the circulation as compared to the intratumoral CFH expression. Additionally, increases of intratumoral CFH expression positively correlate with increases for other molecular and cellular mediators inflammation and immune suppression ([Fig. 6D](#)). A hypothetical model based on the data here and previously published shows how the CFH contributes to immunosuppressive Treg accumulation in GBM ([Fig. 6E](#)).
DISCUSSION

The relationship between IDO and its regulatory effects on the complement cascade was initially described in the anatomical setting of placenta (36). At the time, there was no description of how treatment with the IDO pathway inhibitor, 1-methyl tryptophan (1-MT), affected intra-placental CFH expression levels or tryptophan and kynurenine levels. In a subsequent study, Li et al. demonstrated that pharmacologic IDO pathway modulation with either 1-MT or NLG919 triggered chemo-radiation-dependent complement C3 deposition at sites of tumor growth in the GL261-based mouse orthotopic brain tumor model (37). However, there was no description of how 1-MT or NLG919 affected intratumoral CFH expression levels or tryptophan and kynurenine levels. This is of significant notability since D1-MT, which has the most potent anti-brain tumor effects (17) and is used as the exclusive stereoisomer of 1-MT in clinical trials (15), does not effectively inhibit tryptophan metabolism (38, 39).

Complement C3 functions as a pivotal inducer by activating the complement-mediated inflammatory pathways, while CFH/FHL-1 plays a critical inhibitory role that suppresses complement-mediated inflammatory responses. With respect to the observations of our study, it’s possible that the mechanistic effects of IDO enzyme activity on C3 activation are independent from those underlying the IDO non-enzyme effects on CFH/FHL-1 regulation. Since IDO protein is expressed in a majority of human cancer including GBM (13), further investigation that focuses on the molecular mechanism(s) underlying IDO regulation of C3 activation and CFH/FHL-1 is warranted. In the present study, we showed for the first time that human tumor cells utilize IDO non-enzyme activity to enhance the expression level of immunosuppressive CFH and its truncated isoform, FHL-1. We further demonstrated that tumor cell FHL-1: (i) enhanced macrophage maturity, (ii) enhanced macrophage expression for ARG1, CCL2, and IL-6, and (iii) decreased the
survival of mice with brain tumors in part by suppressing the anti-GBM T and NK cell immune response. Translationally relevant, we also showed that IDO and CFH expression are positively correlated in patient-resected GBM and that increased intratumoral CFH/FHL-1 levels are associated with decreased GBM patient survival. This study therefore contributes a mechanistic understanding for why pharmacologic IDO enzyme inhibitor treatment fails to reverse the immunosuppressive effects of IDO when administered as a monotherapy (15).

Questions regarding the immunosuppressive role of CFH/FHL-1 remain to be addressed in the setting of GBM. First, does full-length CFH play an identically immune tolerant role as the isoform, FHL-1? Previous work showed that CFH-treated monocyte-derived dendritic cells (MoDCs) had a tolerogenic state, such as the production of immunomodulatory mediators including IL-10 and TGF-β, a reduced expression for CCR7 and chemotactic migration, impaired CD4+ T cell alloproliferation, and an induction of CD4+CD127low/CD25high/Foxp3+ regulatory T cells (40). One future direction to investigate how CFH/FHL-1 regulates complement pathway activation in GBM. However, as demonstrated in Fig. 6E and by Olivar et al., CFH/FHL-1 may possess immunomodulatory activities that are independent of complement regulation, raising important considerations for further mechanistic study (40).

Our microarray analysis discovered a similar pattern of regulation between IDO and CFH in human GBM, in vitro, and this effect was confirmed in patient-resected tumors, in vivo. We further showed that both the full length CFH and truncated variant, FHL-1, suppress the immune response in GBM. Although both CFH and FHL-1 have been previously associated with mechanisms of immune evasion (41, 42), no previous investigation focused on the role of FHL-1 in tumor-induced immunosuppression. Interestingly, FHL-1 is not expressed by mice (43) which allowed us to ignore the potential for multi-species gene expression competition of similar protein product
during our investigation of IDO⁺tGBM cells expressing human FHL-1 cDNA. In summary, we have revealed a non-enzymic function of IDO in human tumor cells that non-metabolically increases immunosuppression and contributes to poorer survival outcomes.
REFERENCES

FIGURE LEGENDS

Figure 1. Tumor cell IDO mediates immune suppression in-part through an IDO-dependent tryptophan metabolism-independent mechanism. (A) Schematic representation of the protocol used to generate IDO−/−tGBM cells that express vectors with or without IDO cDNA. (B) Left panel: Western blotting and quantitative RT-PCR for the detection of IDO in IDO−/−tGBM cells expressing an empty vector (VectorEMPTY), wild-type IDO cDNA (IDOWT), or enzyme-null IDO cDNA (IDOH350A); Center panel: HPLC quantification of kynurenine (Kyn) and tryptophan (Trp) levels in cell culture supernatants of genetically modified IDO−/−tGBM cell lines (n=3 per cell line reflecting one representative experiment from more than 15 experimental repeats); Right panel: Cell proliferation assay to compare the in vitro growth of genetically modified IDO−/−tGBM cells (n=4 per cell line reflecting one representative experiment from 8 experimental repeats). (C) IDO−/−tGBM mice were intracranially-engrafted with genetically modified IDO−/−tGBM cells, with or without treatment of anti-CD4 and anti-CD8 mAbs beginning at day -3 prior to intracranial engraftment and twice/week for up to 30 days post-intracranial engraftment followed by monitoring for overall survival (n=7-22/group). The long-term survival rate (LTS) and median overall survival (mOS) is labeled on the graph. Survival monitoring of mice depleted for leukocytes ended at 58 days post-engraftment. (D) Tumor tissue samples were isolated at 4-weeks post-tumor cell engraftment followed by the analysis of tumor infiltrating leukocyte phenotypes. The percentage and absolute cell numbers of CD8+ T cells, CD4+ T cells, and CD4+CD25+FoxP3+ were quantified (n=8 per group). (E) Left panel: Flow cytometric analysis of genetically modified IDO−/−tGBM cells co-cultured with splenic CD11b+ monocytes isolated from IDO−/−tGBM mice (n=3 per group that reflect one representative experiment from 5 experimental repeats). Mature macrophage surface markers: CD11b+Ly6G−Ly6C+. Right panel: HPLC measurement of Trp
and Kyn from the co-culture cells experiment. **, $P < 0.01$; ***, $P < 0.001$. ND: not detectable, ns: not significant. All bar graphs represent mean ± SEM and dot plots show the median value as a horizontal line.

Figure 2.
Indoleamine 2,3 dioxygenase 1 (IDO) non-metabolically increases complement factor H (CFH) levels in human glioblastoma (GBM). (A) Flow chart for the microarray experimental design, data analysis, as well as validation of results. Real-time RT-PCR confirmation of IDO regulatory effects on CFH expression in cultured (B) U87 or (C) PDX43 GBM. Cells were exposed to a variety of conditions including transfection with IDO specific siRNA (20 nM) or scrambled control siRNA for 16 hours, treatment with or without 100ng/mL human interferon-gamma (IFN-γ), treatment with or without the IDO enzyme inhibitor, BGB-5777 (1uM), or IFNγ plus BGB-5777 for 24 hours. Quantitative RT-PCR was performed (n=3 reflecting one representative experiment from 4 experimental repeats). (D) Quantitative RT-PCR analysis of IDO and CFH mRNA expression on IFNγ-stimulated U87 cells treated with CFH siRNA or scrambled control siRNA. Same experimental conditions as in [B] (n=3/group reflecting one representative experiment from 3 experimental repeats). (E) mRNA expression levels for human IDO, CFH, and CD3ε were quantified and compared among intracranial PDX43 and patient-resected newly-diagnosed or recurrent intracranial human GBM (n=4-9/group). Intracranially-engrafted (ic.) PDX43 was isolated from humanized mice with or without treatment of CD4+ and CD8+ T cell depleting antibodies between 14 - 21 days post-intracranial injection. ***, $P < 0.001$; ND: not detectable, ns: not significant. All bar graphs represent mean ± SEM.
Figure 3. Indoleamine 2,3 dioxygenase 1 (IDO) and complement factor H (CFH) mRNA levels positively correlate with T cell infiltration in patient-resected glioblastoma (GBM). (A) mRNA expression levels for IDO and CFH in grade II (green; n=226), grade III (blue; n=249), and grade IV (GBM; red; n=172) glioma of the RNA Hi-Seq. Illumina dataset as analyzed in the cancer genome atlas (TCGA). Horizontal lines in the scatter plots represents mean ± SEM. (B) Pearson’s correlation analysis for IDO and CFH mRNA levels within GBM and all-grade glioma. (C) Kaplan-Meier (KM) survival analysis of grade II (left), grade III (center), and grade IV (GBM, right) glioma patients stratified by low CFH (blue) and high CFH (red) expression levels. (D) Kaplan-Meier analysis of GBM recurrence. Recurrent GBM samples were identified from the ‘days to tumor recurrence’ section listed in the TCGA GBM clinical dataset. CFH mRNA expression levels were extracted from the Affymetrix U133a microarray dataset. (E) CFH mRNA levels were compared among grade II (IDH_{wt}; blue circle and IDH_{mut}; red square), grade III (IDH_{wt}; green triangle and IDH_{mut}; purple circle), as well as grade IV (IDH_{wt}; orange circle and IDH_{mut}; black triangle) glioma. (F) CFH DNA methylation analysis at two distinct genomic loci, cg06377993 and cg23557926 in grade II (IDH_{wt}; blue circle and IDH_{mut}; red square), grade III (IDH_{wt}; green triangle and IDH_{mut}; purple circle), and grade IV (IDH_{wt}; orange circle and IDH_{mut}; black triangle) glioma. (G) Expression of CFH and IFNγ mRNA levels in patient-resected GBM tissue samples as categorized by CD3E and CD8A expression levels while accessing the TGGA GBM RNA-Seq. dataset. (H) Detection of CFH mRNA in the human GBM cell-T cell co-culture system in vitro. CD3⁺ human T cells were isolated under positive selection from GBM patient peripheral blood mononuclear cells (PBMCs). CFH mRNA levels were analyzed in U87 GBM cells co-cultured with either naïve or activated T cells or conditioned medium from activated T cells in the presence or absence of IFNγ-neutralizing antibodies. Data were compiled from three
independent experiments. (I) *In vitro* expression analysis of human CFH mRNA in different GBM cells with or without the addition of human IFNγ. Data represent pooled data from four independent experiments. **, P < 0.01; ***, P < 0.001; ND: not detectable. All bar graphs represent mean ± SEM.

Figure 4. Indoleamine 2,3 dioxygenase 1 (IDO) enhances the expression of both complement factor H (CFH) isoforms in human glioblastoma (GBM). (A) Schematic representation of CFH transcript variants reflecting the full-length (CFH) and truncated (FHL-1) sequences. Pearson’s correlation analysis of (B) IDO and (C) CD3E with CFH and FHL-1 using the TCGA GBM RNA-Seq dataset. (D) *Left panel:* Western blot analysis of surgically-resected tumor tissue samples from both newly diagnosed GBM patients and recurrent GBM patients. *Right panel:* Protein expression of full-length and truncated CFH variants and IDO in IFNγ-stimulated U87 cells. Cells were treated with IFNγ and cultured in serum-free medium for 24 to 48 hours. Both cell lysates and cell culture supernatants were collected. The supernatants were concentrated with ultrafiltration and analyzed by Western blot along with cell lysate samples. One representative result is shown that reflects 4 experimental repeats. (E) Time course analysis of IDO, CFH, FHL-1 mRNA expression after treatment with IFN-γ in U87 (top row) and PDX43 (bottom row) GBM cells. The U87 cells were stimulated with 100 ng/ml human IFNγ and RNA lysates were extracted followed by quantitative RT-PCR analysis (n=4). (F) Western blot of cell lysates and supernatants collected from the same experimental design as in top panel. Data from one representative experiment from 2 experiments are shown. (G) *Top panel:* Western blot showing IDO protein levels in unmodified (Unmod.) as well as in CRISPR-Cas9 IDO-deleted (IDOKO) U87 cells. Unmod. U87 cells and IDOKO U87 cells were stimulated with 100 ng/mL human IFNγ for 24 hours. Protein lysates were collected.
from both untreated and IFNγ treated cells followed by Western blotting analysis; **Lower panel:** HPLC measurement of kynurenine (Kyn) and tryptophan (Trp) in Unmod. U87 and IDOKO U87 cells. (H) Comparison of IDO, CFH, and FHL-1 mRNA expression induction in Unmod. and IDOKO U87 cells using quantified RT-PCR (n=3 per group that reflects 1 representative experiment after 2 repeats). ***, P < 0.001; ND: not detectable. All bar graphs represent mean ± SEM.

Figure 5. Complement factor H (CFH) increases immunosuppressive factor expression and decreases overall survival in a syngeneic mouse brain tumor model. (A) Splenic CD11b+ monocytes were isolated from IDO−/−tGBM mice and co-cultured with either IDO−/−tGBM cells expressing VectorEMPTY or FHL-1 cDNA. RT-PCR quantification for ARG1, CCL2, and IL-6 mRNA levels were determined in cultured macrophages (blue bar), macrophages co-cultured with IDO−/−tGBMs expressing VectorEMPTY (red bar), or macrophages co-cultured with FHL-1 cDNA (green bar) (n=3 per group reflecting data compiled from 2 independent experiments). (B) RT-PCR quantification for ARG1 and CCL2 in cultured IDO−/−tGBMs alone (blue bar), IDO−/−tGBM cells expressing FHL-1 cDNA (red), IDO−/−tGBM cells expressing VectorEMPTY co-cultured with macrophages (green bar) and IDO−/−tGBM cells expressing FHL-1 cDNA co-cultured with macrophages (purple bar) (n=3 per group reflecting data compiled from 2 independent experiments). (C) Kaplan-Meier (KM) survival analysis of IDO−/−tGBM mice intracranially engrafted with either IDO−/−tGBM cells expressing VectorEMPTY (blue) or IDO−/−tGBM cells expressing FHL-1 cDNA (red) (n=17/group). Colorful numbers represent median survival (MS). Plots without labeled numbers indicate undefined MS. (D) Kaplan-Meier (KM) survival analysis of IDO−/−tGBM mice intracranially engrafted with either IDO−/−tGBM cells expressing VectorEMPTY
or IDO−/tGBM cells expressing FHL-1 cDNA in the presence or absence of anti-mouse-CD4 mAb, -CD8 mAb, and -NK1.1 mAb (n=8-10/group). Colorful numbers represent median survival (MS). (E) Flow cytometry analysis of tumor infiltrating lymphocytes and MDSCs from GBM tissue samples collected at 3-week post intracranial injection; (F) Gene expression analysis on mouse GBM tumor tissues and contralateral non-tumor brain samples. Mice intracranially injected with modified IDO−/tGBM cells were euthanized when displaying endpoint symptoms. Brain tumor tissues and contralateral brain tissues were collected at stored at Trizol reagent. At the end of survival analysis [65-days post injection, (Fig. 5C)], all samples were subjected to RNA extraction and real-time RT-PCR. Plots without labeled numbers indicate undefined MS. *, \(P < 0.05 \); **, \(P < 0.01 \); ***, \(P < 0.001 \); ****, \(P < 0.0001 \). All bar graphs represent mean ± SEM.

Figure 6. Systemic and local complement factor H levels and the relationship with other immunosuppressive factors in patient-resected glioblastoma (GBM). (A-B) Quantification of protein levels of full-length and truncated CFH in patient plasma samples by mass spectrometry. (C) Pearson’s correlation analysis for CFH mRNA with PD-L1, PD-L2, PD-1, CTLA-4, STAT3, CD39, BTLA, LAG3, FOXP3 and FGL2 in GBM. Each small circle in the plot represents the expression in a single patient. (D) Canonical-correlation analysis of CFH with major tumor immune cell types. The signature genes of each type of immune cells are defined as: CD8+ T cell (CD3\textepsilon, CD8\alpha), Treg (CD3\textepsilon, CD4, CD25, FoxP3), MDSCs (CD14, CD11b, CD33, and Arg1), TAM (CD14, HLA-DR, CD312, CD115, CD163, CD204, CD301, CD206), and neutrophil (CD11b, CD16, CD66b, ELANE). (E) Schematic presentation of a hypothesis based on the findings reported here and elsewhere. Standard of care treatment radiation (RT) and temozolomide (TMZ) enhances inflammatory mechanisms that alter the immune tolerant (cold) GBM
microenvironment into a more inflamed (hot) conditions which is partially caused by tumor-infiltrating IFNγ+ CD8+ T cells. The IFNγ acts on human GBM cells to induce IDO expression, which in-turn, enhances CFH expression levels through a non-enzymic mechanism. CFH acts on complement receptors in an autocrine and paracrine manner; the latter of which elicits CCL2 expression in TAMs. The TAMs then facilitate Treg and additional monocyte recruitment into the GBM which reinforces the immunosuppressive microenvironment.
A Peripheral blood – Plasma analysis

- Aneurysm patient (n=15)
- GBM patient (n=30)

B Newly-diag. GBM Pt. (n=21)
- Recurrent GBM Pt. (n=9)

C Patient-resected glioblastoma

D Correlative gene mRNA signatures in patient-resected glioblastoma, Log2

E Cold / Hot

[Diagram showing interaction between immune cells and glioblastoma cells]
Tumor cell IDO enhances immune suppression and decreases survival independent of tryptophan metabolism in glioblastoma

Lijie Zhai, April Bell, Erik Ladomersky, et al.

Clin Cancer Res Published OnlineFirst September 3, 2021.

Updated version Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-21-1392

Supplementary Material Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2021/09/02/1078-0432.CCR-21-1392.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link
http://clincancerres.aacrjournals.org/content/early/2021/09/02/1078-0432.CCR-21-1392.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.