The novel nucleoside analogue ProTide NUC-7738 overcomes cancer resistance mechanisms in vitro and in a first-in-human Phase 1 clinical trial

Hagen Schwenzer1,2, Erica De Zan2,3, Mustafa Elshani4, Ruud van Stiphout2,3, Mary Kudsy4, Josephine Morris5, Valentina Ferrari5, In Hwa Um6, James Chettle1, Farasat Kazmi1, Leticia Campo1, Alistair Easton1, Sebastian Nijman7,8, Michaela Serpi1, Stefan Symeonides6, Ruth Plummer7, David J Harrison4,8, Gareth Bond2,5 and Sarah P Blagden1*

1Department of Oncology, University of Oxford, United Kingdom
2Ludwig Institute for Cancer Research, University of Oxford, United Kingdom
3Target Discovery Institute, University of Oxford, United Kingdom
4School of Medicine, University of St Andrews, United Kingdom
5School of Pharmacy, University of Cardiff, United Kingdom
6Cancer Research UK Edinburgh Centre, Western General Hospital, Edinburgh, United Kingdom
7Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, United Kingdom
8NuCana plc, 3 Lochside Way, Edinburgh, United Kingdom
5Current address: Institute of Cancer and Genomic Sciences, University of Birmingham, United Kingdom
*Corresponding author: Sarah Blagden, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom; Tel: +44 (0)1865 617409; e-mail: sarah.blagden@oncology.ox.ac.uk

Running title:
NUC-7738 and cancer

Keywords:
Cancer, cordycepin, 3’-deoxyadenosine, HINT1, ProTide, NUC-7738

Authors’ Disclosures:
NMCC was an employee of NuCana plc during this study. SPB, HS and DJH received institutional research grants from NuCana plc to conduct this research study. IHU is funded by Lothian NHS and Innovate UK as part of iCAIRD. SS, SPB and ERP received clinical trial sponsorship from NuCana plc to conduct the associated clinical trial and institutional grants and personal fees from other companies outside the submitted work. No other relevant disclosures were reported.
ABSTRACT

Purpose: Nucleoside analogues form the backbone of many therapeutic regimens in oncology and require the presence of intracellular enzymes for their activation. A ProTide is comprised of a nucleoside fused to a protective phosphoramidate cap. ProTides are easily incorporated into cells whereupon the cap is cleaved and a pre-activated nucleoside released. 3’-deoxyadenosine (3’-dA) is a naturally-occurring adenosine analogue with established anti-cancer activity in vitro but limited bioavailability due to its rapid in vivo deamination by the circulating enzyme adenosine deaminase, poor uptake into cells and reliance on adenosine kinase for its activation. In order to overcome these limitations, 3’-dA was chemically modified to create the novel ProTide NUC-7738.

Experimental Design: We describe the synthesis of NUC-7738. We determine the IC_{50} of NUC-7738 using pharmacokinetics (PK) and conduct genome-wide analyses to identify its mechanism of action using different cancer model systems. We validate these findings in cancer patients.

Results: We show that NUC-7738 overcomes the cancer resistance mechanisms that limit the activity of 3’-dA and that its activation is dependent on ProTide cleavage by the enzyme histidine triad nucleotide binding protein 1. PK and tumour samples obtained from the ongoing first-in-human Phase 1 clinical trial of NUC-7738 further validate our in vitro findings and show NUC-7738 is an effective pro-apoptotic agent in cancer cells with effects on the NF-κB pathway.

Conclusions: Our study provides proof that NUC-7738 overcomes cellular resistance mechanisms and support its further clinical evaluation as a novel cancer treatment within the growing pantheon of anti-cancer ProTides.

Statement of translational relevance

ProTide modification of nucleoside analogues is designed to overcome the cellular resistance mechanisms that limit their efficacy. This consists of the chemical addition of a protective phosphoramidate moiety onto the parent nucleoside, in this case the natural nucleoside analogue 3’-deoxyadenosine (3’-dA) to form the ProTide NUC-7738. The mode of action of 3’-dA has been the subject of speculation as its major limitation is its short plasma half-life due to rapid enzymatic deamination by adenosine deaminase (ADA). We demonstrate that NUC-7738 is resistant to deamination by ADA and cleaved by the intracellular phosphoramidase HINT1 into 3’-dAMP for conversion to the active metabolites 3’-dADP and 3’-dATP. We show that NUC-7738 promotes pro-apoptotic pathways and attenuates NF-κB. These findings are validated in tumour samples from patients in an ongoing first-in-human trial of NUC-7738 from which we have identified biomarkers to enrich our understanding of NUC-7738 and patients most likely benefiting from it.
Introduction

3\textsuperscript{'}-deoxyadenosine (3\textsuperscript{'-dA}) or cordycepin is a natural nucleoside analogue and the bioactive component of the fungus *Cordyceps sinensis*, a traditional remedy for inflammatory diseases and cancer (1–6). The pharmacological activity of 3\textsuperscript{'-dA} is attributed to its major metabolite, 3\textsuperscript{'}-deoxyadenosine-5\textsuperscript{'-triphosphate} (3\textsuperscript{'}-dATP or cordycepin triphosphate (CTP)) (1,2,7), which is generated when 3\textsuperscript{'-dA} is converted to 3\textsuperscript{'-dAMP} by the rate-limiting phosphotransferase adenosine kinase (ADK), and from thence to 3\textsuperscript{'-dADP} and 3\textsuperscript{'-dATP}. The drug has proven pleotropic *in vitro* activities including mRNA transcription inhibition (8) and depletion via poly(A)-tail length destabilisation (9,10), activation of AMPK (11) and induction of apoptosis (6,12–15). Despite these potent *in vitro* effects, it has minimal *in vivo* activity due to its rapid hydrolysis by the ubiquitous circulating enzyme adenosine deaminase (ADA) and poor uptake into cells via the nucleoside transporter hENT1 (11,16). To improve its stability 3\textsuperscript{'-dA} has been co-administered with the ADA inhibitor pentostatin in pre-clinical studies and two clinical trials (NCT0003005 and NCT00709215) but the combination induces synergistic and dose-limiting toxicities such as hepatic and renal damage (16–19). Like a selection of other nucleoside analogues, the structure and stepwise phosphorylation of 3\textsuperscript{'-dA} makes it a potential candidate for ProTide chemistry. Using this approach, a pre-activated or monophosphate version is chemically synthesised and fused to a protective cap, comprised of an aryl, ester and amino acid group termed the phosphoramidate motif to form the ProTide. Once inside the cell, the motif is hydrolysed releasing the active drug. ProTide chemistry has been applied to nucleoside anti-viral therapies to generate sofosbuvir and to the anti-cancer nucleoside analogues 5-FU (20,21) and gemcitabine to generate NUC-3373 and NUC-1031 (Acelarin), respectively. ProTides are clinically attractive as they bypass the rate-limiting steps of nucleoside uptake and monophosphorylation in order to deliver a high concentration of active drug into cells (22–27). In the case of 3\textsuperscript{'-dA}, ProTide modification is anticipated to provide the additional benefit of protection from ADA degradation. Here we describe the phosphoramidate transformation of 3\textsuperscript{'-dA} to the ProTide NUC-7738, and the RNA sequencing and genome-wide genetic screens conducted to assess the mechanism of activation and activity of NUC-7738 compared to the parent drug, 3\textsuperscript{'-dA}. A first-in-human (Phase I) dose-escalation and expansion trial of NUC-7738 commenced in June 2019 and is currently ongoing. Pharmacokinetic and tumour samples obtained from study participants further validate our *in vitro* findings that NUC-7738 is an effective pro-apoptotic agent in cancer cells with additional effects on the NF\(\kappa\)B pathway.
Materials and Methods

Drug synthesis

Briefly, to prepare compound 12, 3’dA was protected quantitatively at the 2’ and 3’ position with tert-butyl dimethylsilyl chloride in DMF in the presence of imidazole and DMAP to obtain compound 10. Selective 5’-deprotection of the silyl group with a 1:1:4 mixture of trifluoroacetic acid (TFA) in water and THF yielded 98% of desired product 11. Coupling of compound 11 with phenyl L-alanine benzyl ester phosphorochloridate by means of NMI in THF yielded 62% of 2’-TBDMS protected ProTide 12 (28). Deprotection of 12 using TFA in dichloromethane yielded ProTide 7 in good yield. This protection deprotection strategy proved to be an efficient way to prepare 7a obtained with an overall yield of 42%. Chemical synthesis of 3’-Deoxyadenosine-5’-O-phenyl-(benzyloxy-L-alaninyl)-phosphate and its precursors: 2’,5’-(bis-O-tert-butyldimethylsilyl)3’-deoxyadenosine (10), 2’-O-tert-butylidimethylsilyl-3’-deoxyadenosine (11) and 3’-Deoxyadenosine-2’-O-[tert-butylidimethylsilyl-5’-phenyl-(benzyloxy-L-alaninyl)]-phosphate (12) was performed as detailed below.

2’,5’-(Bis-O-tert-butylidimethylsilyl)3’-deoxyadenosine (10). 3’-Deoxyadenosine (1) (1.13 g, 4.5 mmol), was dissolved in DMF (50 mL) and TBDMSCl (2.03 g, 13.5 mmol) and imidazole (1.84 g, 27 mmol) were added to the flask. The mixture was stirred for 16 hours at room temperature. The reaction mixture was diluted with CHCl₃ (20 mL) and the organics were washed with NH₄Cl (saturated solution, 20 mL x 3). The organics were dried over Na₂SO₄, filtered and evaporated to afford 10 as a sticky solid (1.56 g, 72%).

2’-O-tert-butylidimethylsilyl-3’-deoxyadenosine (11). Compound 10 (1.56 g, 3.25 mmol) was dissolved in THF (2 mL) and cooled down to 0°C. A solution of TFA in water (1 mL, 1/1 v/v) was added dropwise and the mixture was stirred for 5 hours at 0°C. The solution was evaporated under vacuum and the crude purified via Biotage Isolera One (30g ZIP cartridge KP SIL, 60 mL/min, gradient eluent system 2-20% CH₃OH/CH₂Cl₂ 10CV, 20% 5CV) to yield 11 as a white foam (1.16 g, 98%).

3’-Deoxyadenosine-2’-O-[tert-butylidimethylsilyl-5’-phenyl-(benzyloxy-L-alaninyl)]-phosphate (12). To a solution of 2’-O-tert-butylidimethylsilyl-3’-deoxyadenosine 11 (0.05 g, 0.14 mmol) in THF (2 mL), phenyl-(benzylloxy-L-alaninyl) phosphorochloridate(28) (0.14 g, 0.41 mmol) in THF (0.5 mL) and N-methylimidazole (56μL, 0.7 mmol) were added. The crude was purified via Biotage Isolera One (10g SNAP cartridge KP SIL, 10 mL/min, gradient eluent system 1-10% CH₃OH/CH₂Cl₂ 12CV, 10% 2CV) to afford the title compound 12 as a white solid (0.06 g, 62%).

3’-Deoxyadenosine 5’-O-phenyl-(benzyloxy-L-alaninyl)-phosphate (7). Compound 12 (0.10 g, 0.14 mmol) was dissolved in anhydrous CH₂Cl₂ (2 mL), and cooled down at 0°C. TFA (2 mL) was added dropwise to this solution and the reaction stirred overnight at rt. Purification by Biotage Isolera One (cartridge SNAP 25g, 25 mL/min, CH₃OH/CH₂Cl₂ 1-8% 10 CV, 8% 5 CV) afforded the title compound as
a white solid (0.063 g, 76%). Reverse-phase HPLC eluting with H$_2$O/CH$_3$CN from 100/10 to 0/100 in 30 minutes, F = 1mL/min, $\lambda$ = 254 nm, $t_R$ 13.56 and 13.75 min. C$_{26}$H$_{29}$N$_6$O$_7$P required $m/z$ 568.2 [M].

MS (ES+) found $m/z$ 569.2 [M+H]$^+$, 591.2 [M+Na]$^+$, 1159.4 [2M+Na]$^+$. All solvents used were anhydrous and used as supplied by Sigma-Aldrich. All commercially available reagents were supplied by either Sigma-Aldrich or Fisher and used without further purification. All solid reagents were dried for several hours under high vacuum prior to use. For analytical thin-layer chromatography (TLC), precoated aluminium-backed plates (60 F-54, 0.2 mm thickness; supplied by E. Merck AG, Darmstadt, Germany) were used and developed by an ascending elution method. After solvent evaporation, compounds were detected by quenching of the fluorescence, at 254 nm upon irradiation with a UV lamp. Column chromatography purifications were carried out by means of automatic Biotage Isolera One. Fractions containing the product were identified by TLC and pooled, and the solvent was removed in vacuo. $^1$H, $^{31}$P, and $^{13}$C NMR spectra were recorded in a Bruker Avance 500 spectrometer at 500 MHz, 202 MHz and 125 MHz respectively and auto-calibrated to the deuterated solvent reference peak in case of $^1$H and $^{13}$C NMR and 85% H$_3$PO$_4$ for $^{31}$P experiments (see Supplementary Materials). All $^{31}$P and $^{13}$C NMR spectra were proton-decoupled. Analytical High-Performance Liquid Chromatography (HPLC) analysis was performed using both Spectra System SCM (with X-select-C18, 5 mm, 4.8 x 150 mm column) and Varian Prostar system (LCWorkstation- Varian Prostar 335 LC detector). Low-resolution mass spectrometry was performed on a Bruker Daltonics MicroTof-LC system (atmospheric pressure ionization, electron spray mass spectroscopy) in positive mode. Of note, all compounds used for the pre-clinical investigation were synthesised at a small scale yielding in 50-100 mg product per batch. The purity >99% of the final compound 7 was confirmed using HPLC analysis and prepared at a facility under Good Manufacturing Product (GMP) guidelines for use in clinical research studies.

**Cell culture**

HAP1 cells were grown in Iscove's Modified Dulbecco's Medium. AGS cells were grown in Ham's F-12 Medium. CAKI-1 (RRID:CVCL_0234) NCI-786 (RRID:CVCL_1051 A498), UO-31 (RRID:CVCL_19111), ACHN (RRID:CVCL_1067), 501MEL (RRID:CVCL_4633), OVCAR-8 (RRID:CVCL_1629), SK-OV3 (RRID:CVCL_0532) and Tera-1 cells (RRID:CVCL_2776) were cultivated in Roswell Park Memorial Institute 1640 Medium. HeLa cells (RRID:CVCL_0030) were grown in Dulbecco's Modified Eagle Medium with high glucose. All media were supplemented with 10% FCS and 1% PenStrep. Cells were cultivated at 37°C and 5% CO$_2$ in a humidified cell culture incubator for no longer than 15 passages after thawing.
**Cellular function assays**

10⁴ cells were seeded into 96-well plates and then treated with NUC-7738 (lot 5132/E00393/119) or 3′-dA (Cordycepin, # C3394, lot 067M4182, Sigma) for 48 hours. 1.5 mg/ml MTT (#M6494, Invitrogen) in a 1:1 ratio was added to cell culture media. After a 2-hour incubation at 37°C, media was removed and 70 µl of Isopropanol was added. Optical densities at 570 nm were measured using POLARstar Omega plate reader. Readouts were normalised and IC₅₀ values were calculated using a non-linear regression model in Graphpad prism (v8.3.0). Each biological replicate (at least 3) was performed in 4 technical replicates to calculate the average IC₅₀ value. To measure apoptosis, the Guava Nexin®Reagent (Luminex Corp.) was used following manufacturer’s instructions. Fluorescence staining was measured with an automated 96-well Guava® easyCyte™ Flow Cytometer (Luminex Corp.).

**Haploid genetic screen**

Gene-trap mutagenesis of wild-type HAP1 cells was performed as described previously (29–31). An initial mutant library(31) containing 20 million HAP1 cells were seeded in a T175 flask and expanded to 250 million cells. For each treatment group, cells were split into 4x T175 flasks containing at least 20 million cells each and grown for 48 hours prior to treatment. Cells were treated every 48 hours with either 7.5x IC₅₀ of 3′-dA or 7x, 14x and 18x IC₅₀ of NUC-7738. Cell media was removed and replaced with new media containing 3′-dA or NUC-7738. After 12 days, cell culture media was removed and replaced with new media without drugs. After selection, resistant colonies were expanded to approximately 3 × 10⁷ cells and used for genomic DNA isolation and insertion site retrieval. Gene-trap insertion sites were recovered by linear amplification of genomic DNA sequences flanking the retroviral integration sites, sequenced, mapped to the human genome (hg19) and analysed for enrichment of disruptive insertions over the control data set as described before (32).

**RNA sequencing and analysis**

Cells were treated for 6 hours with 46 µM (IC₅₀) and 375 µM (IC₉₀) 3′-dA and 7.6 µM and 125 µM NUC-7738. Cells were washed with PBS and RNA was extracted using Quick RNA extraction kit with DNase (Zymo Research) on column treatment and final EtOH precipitation step. RNA quality was assessed by RIN facto determination using Agilent RNA 6000 Nano kit on a Bioanalyser. Libraries were prepared using Illumina TrueSeq stranded total RNA protocol with insert size 150-250 nt, multiplexed and sequenced on an Illumina Hiseq4000 system as 75 pair-end resulting in ~50 million reads per sample. Resulting reads were aligned to the human reference genome (GRCh37) using
HiSAT2(v2.1.1). RNA sequencing quality was assessed using RNA-SeQC and duplicate reads were removed using Picard MarkDuplicates tool (RRID:SCR_006525, Broad Institute). Mapped, deduplicated reads were counted using featureCounts (v1.5.0). Counted reads were analysed for differential expression using R-studio (v3.4.3) with DESeq2 package (RRID:SCR_000154, v1.18.1). The HALLMARK and REACTOME pathway enrichment analyses (RRID:SCR_003485) were performed with Gene Set enrichment Analysis software from Broad Institute using default settings. Leading edge analysis was performed with gene sets showing FDR<0.25. Leading edge genes were extracted and the fold change of significantly differentially expressed genes was plotted as a heatmap using Graphpad prism (v8.3.0).

RNA from patient biopsy was extracted and sequenced as follows. Haematoxylin and eosin stained FFPE sections were analysed for percentage tumour area. Extraction of the FFPE tissues was performed using the Qiagen FFPE RNeasy kit. RNA was isolated from the macro-dissected tumour area, upon completion of the extraction, the RNA samples underwent quantity and quality assessment. cDNA libraries were prepared using the Roche KAPA RNA HyperPrep with RiboErase (HMR) library preparation kit and sequenced on a NovaSeq 6000 as 76 pair-end resulting in ~100 million reads per sample. Raw sequencing data in FASTQ format were assessed using FastQC (RRID:SCR_014583). Reads were aligned to the human reference genome (GRCh38) using HiSAT2(v2.1.1), and duplicate reads were removed using Picard MarkDuplicates tool (Broad Institute). Mapped, deduplicated reads were then counted using Salmon (v1.4.0) using ‘quant’ function in alignment-based mode. Raw count data were then imported to TCC-GUI a R-shiny graphical user interface application and analysed using edgeR (RRID:SCR_012802) for differential gene expression.

**Target gene knockdown and depletion**

Cells were transfected with stealth siRNA (#HSS104782, #HSS104784, #HSS179235, ThermoFisher) targeting HINT-1 using Lipofectamine® RNAiMAX (Invitrogen) following the manufacturer’s protocol. At 48 hours post-transfection, cells were treated and cell viability was measured 96 hours post-transfection as described above. Samples for western blot analysis were harvested 48 hours post-transfection. For gene depletion experiments, approximately 4x10⁵ HAP1 cells were seeded per well in a 6-well plate and grown to approximately 50% confluency. After 24 hours, cells were transfected with lentiCRISPR v2 plasmid (GenScript) containing a guide RNA targeting gene of interest using Turbofectin (#TF81001, OriGene) according to manufacturer’s instruction. The following sequences were used: HINT-1 CRISPR guide RNA 2 (CCTGGTGGCGACACGATCTT) and NUDT2 CRISPR guide RNA 2 (AATTGCATTGTTGTCCACTT). At 24 hours post-transfection, positively transfected cells were selected.
using 2 μg/μl Puromycin for 72 hours. After selection, surviving colonies were expanded and used for downstream analysis. For clonal selection, clones were selected using limited dilution and expanded into a 6-well plate for western blot screening.

**Colony formation assay**

HAP1 cells were seeded at a density of 10,000 cells per well in 6-well plates and indicated drug concentrations were added. Media was replaced every 48 hours until all cells from the control plate died. Cells were further grown in normal media until colonies were visible. Cells were washed twice with PBS and stained with 0.5% crystal violet in 20% methanol for 20 minutes.

**Cell lysis, fractionation and western blotting**

Cells were harvested and lysed using RIPA lysis and extraction buffer (Thermo Scientific™) following manufacturer’s protocol. 20-30 μg of total protein lysates was loaded on Mini-PROTEAn®TGX™ precast gels (Biorad). Separated proteins were transferred to a PVDF membrane using Trans-Blot® Turbo™ Transfer System (BioRad) followed by incubation with primary and HRP-conjugated secondary antibodies (anti-mouse, #7076S CST or anti-rabbit #7074S CST) and ECL™ Prime western blotting (GE Healthcare) detection. For fractionation, cells were grown in 10 cm tissue culture plates and treated with 30 or 60 μM of 3’-dA or NUC-7738 for 6 hours. Cells were grown in 10cm tissue culture plates and fractionated using the Nuclear Extraction Kit (Abcam) following manufacturer’s instructions. 25μg of each fraction was used for WB detection. NF-κB p65 antibody (#8242, CST), nuclear marker Lamin B1 (#ab16048 Abcam), cytosolic GAPDH (#97166 CST), cleaved PARP (#9541, CST), Actin (MAB1501, Merck) were used.

**Preclinical Toxicology**

NUC-7738 was administered to beagle dogs in four 4 weekly cycles and reversal of any observed effects were evaluated during a final 2-week treatment-free period. Four dosing groups were defined, each comprising 3 males and 3 females. The groups received NUC-7738 at 5 mg/kg/day, 10 mg/kg/day and 20 mg/kg/day respectively and the fourth received vehicle (polyethylene glycol 400:0.9% NaCl solution [70:30 w/w]). In all groups, dosing was once daily for 5 consecutive days followed by a 2-day treatment-free interval for a total of 4 weeks (i.e., 4 treatment cycles). The following endpoints/parameters were evaluated: body weight, food consumption, ophthalmoscopy, electrocardiography, clinical observations, haematology, coagulation, clinical chemistry, urine analysis, organ weights, gross pathology and histopathology. TK parameters were evaluated on Day 1 and at the end of the last dosing day (day 26) according to a serial profile. Concentrations of NUC-
7738 and its metabolites (cordycepin and 3’-deoxyinosine) in plasma were determined using a validated bio analytical LC-MS/MS method.

The dog toxicology study was reviewed and approved by the Italian Health Authority (AIFA), and the vendor that conducted the study (Aptuit Verona) is part of the AIFA compliance programme. Animal welfare was under the jurisdiction of the vet, who acted on behalf of AIFA to oversee the study and to ensure compliance with the licences. The study was also approved by a local ethical review board at Aptuit Verona.

**Tissue slice culture of clear cell renal carcinoma (ccRCC)**

A fresh sample of ccRCC was placed in formalin to serve as a formalin control for our experiment. The sample was transported in pre-cooled 199 medium (#2154) supplemented with penicillin/streptomycin (1%), Normocin (0.2%) and Glutamax (2mM). The tissue sample was embedded in low-melting point agarose gel and sliced into 250µm sections using a Vibratome VT1000S (Leica Biosystems). Tissue slices were put immediately into media (199 medium supplemented with 10% FBS, 2mM Glutamax and 1% penicillin/streptomycin) containing different concentrations of NUC-7738 (0, 5 and 25µM) and incubated for 24 hours at 37°C. Treated tissue sections were then fixed using PFA for 1h at room temperature and stored in PBS at 4°C. The treated slices were later embedded in paraffin and subsequently sliced into 3µm sections using a microtome. The sections were placed on slides and baked overnight at 40°C. Sections were dewaxed using xylene and rehydrated in a graded alcohol series followed by tap water. Slides were placed into haematoxylin for 5 minutes, washed with running tap water and incubated in Scott’s tap water substitute for 1 minute until the tissue sections turned blue. Slides were then placed in eosin Y aqueous solution for 5 minutes, rinsed in tap water, dehydrated in a graded alcohol series, cleared with xylene and mounted in DPX.

**Immunofluorescence and histochemical staining**

Immunofluorescent staining was performed using BOND RX. NF-κB p65 (#4764, CST) and cleaved caspase-3 (#9661, CST) were detected with Horseradish Peroxidase (HRP)-conjugated secondary antibody and visualised using tyramide-fluorophore conjugates (TSA Cy5 for both). Nuclear counterstain was done using Hoechst. Slides were then scanned using Zeiss Axio Scan Z1.

Histochemical Staining: Cover slips were lifted post multiplex staining (data not shown) and NF-κB (#8242) and HINT-1 (#HPA044577, Atlas Antibodies) antibodies were stained for chromogenically on the Leica BOND autostainer. Antigen retrieval was performed at 100°C for 20 min with Epitope Retrieval Solution 1 (NF-κB) and 2 (HINT1), followed by primary antibody incubation at 1/800 for NF-
κB and 1/500 for HINT-1 dilution for 30 minutes then detection using the BOND™ Polymer Refine Detection System (DS9800, Leica Biosystems) as per manufacturer’s instructions.

Immunohistochemistry and analysis of HINT1 expression in TMA

3µm thick FFPE sections from the tissue microarrays were cut and incubated in 60°C oven overnight. The sections were deparaffinised in xylene and rehydrated in gradually concentrated alcohols (100%, 100%, 80% and 50%) and tap water. The epitopes of antigens on FFPE tissue were unmasked in 0.1M sodium citrated buffer using electric pressure cooker for 5min, followed by 3% hydrogen peroxide (Sigma, #H1009) and serum free protein block (Agilent, #X090930-2) for 5 min and 10 min, respectively. The sections were incubated with anti-HINT1 antibody (Abcam, #ab124912, 1:1500 dilution) for 1 hour at room temperature, followed by 30 min HRP conjugated anti-rabbit secondary antibody (Agilent, #K346811-2) and were visualised by DAB (3,3’-Diaminobenzidine) chromogen (Agilent, #NEL745B001KT) for 10 min. Then the sections were counterstained with haematoxylin for 1 min, followed by bluing agent, Scott’s tap water substitute for 1 min. The sections were dehydrated in gradually concentrated alcohols (50%, 80%, 100% and 100%) and xylene and mounted in DPX mountant (Cellpath, #SEA-1304-00A).

The Allred score, a combination of proportion of positive cells and the predominant intensity of the protein expression (33), was assessed by two observers (IHU and DJH).

Clinical Study:
A Safety Study of NUC-7738 in Patients with Advanced Solid Tumours or Lymphoma, ClinicalTrials number: NCT03829254. Approved by Oxford C Ethics Committee ref 18/SC/0628.

Data availability:
The toxicological data analysed in this study are available from NuCana PLC. Restrictions apply to the availability of these data, which were used under license for this study. All raw sequencing data are available from the authors upon reasonable request with the permission of NuCana PLC. Other data generated in this study are available within the article and its supplementary data files.

Results

Chemical synthesis of ProTide form of 3′-dA: NUC-7738
A pre-activated or monophosphorylated version of 3’-dA (3’-dAMP or cordycepin monophosphate CMP) was synthesised using ProTide chemistry in a process similar to that described previously(28). This generated several pre-activated 3’-dA prodrugs. Of these, 3’-deoxyadenosine-5’-O-phenyl-(benzylxy-L-alaninyl)-phosphate or NUC-7738 (Figure 1A) was selected for further evaluation. A protection-deprotection method described in Supplementary methods was used to prepare NUC-7738 with an overall yield of 42% and a purity of >99%.

Pharmacological comparison of NUC-7738 with 3’-dA
The potency of NUC-7738 was compared with its parent compound 3’-dA by measuring mean half-maximal inhibitory concentrations (IC₅₀) across a wide set of cancer cell lines (Figure 1B-D). NUC-7738 revealed greater potency, with a mean IC₅₀ of 18.8μM, compared to 137.8 μM for 3’-dA (Figure 1D and Table S1), particularly in certain lines such as teratocarcinoma (Tera-1) which were >40-fold more sensitive to NUC-7738. Both NUC-7738 and 3’-dA induced apoptotic cell death, shown by detection of cleaved PARP-1, in cells treated with either 3’-dA or NUC-7738 at 50 and 100 μM (Figure 1E-F).

To assess whether NUC-7738 was resistant to ADA and could bypass ADK and hENT1 (SLC29A1), cell viability was measured after treatment with their specific and corresponding protein inhibitors: erythro-9-(2-Hydroxy-3-nonyl) adenine hydrochloride or EHNA, A134974, and S-(4-nitrobenzyl)-6-thioinosine or NBTI, respectively(16,17,34,35). Whilst 3’-dA was dependent on ADA, hENT1 and ADK as expected (Figure 1G), the potency of NUC-7738 was mostly unaffected by inhibition of ADA or by inhibition of hENT1 or ADK.

Genome-wide haploid genetic screen identifies genes that confer resistance to 3’-dA and/or NUC-7738
To identify genes which – when inactivated – confer resistance to 3’-dA and NUC-7738, we performed an insertional mutagenesis screen using the near-haploid human cell line HAP1 (Figure 2 and S1) (29–32). In short, approximately 20 million HAP1 cells were mutagenized using a retroviral gene-trap vector as described (31), expanded ten-fold and treated with a high concentration (≥7x IC₅₀) of 3’-dA or NUC-7738. After 12 days, drug was washed off and resistant cells were expanded and harvested. The insertion sites of the gene-trap were recovered by LAM-PCR and Illumina sequencing. As a control, we sequenced the insertions of mutagenized cells that were expanded for the same period of time but not exposed to a drug.

Drug-treated cells contained insertions in fewer genes than in the unselected controls. As expected, insertions in ADK were strongly enriched in 3’-dA treated cells (Figure 2 and Table S2-3). We
subsequently validated a selection of genes using CRISPR/Cas9 mediated gene deletion: HINT1, NUDT2, ADK, SMARCA4, UBE2G1 and CREBBP (Figure S2). Besides ADK, the strongest insert enrichment with 3’-dA treatment was found in diadenosine tetraphosphatase (NUDT2). Specific resistance to 3’-dA, but not to NUC7738, was confirmed (Figure S2B-C). Several other enriched genes were confirmed in follow-up experiments including SMARCA4, UBE2G1 and CREBBP, which contribute to 3’-dA sensitivity by a yet to be determined mechanism (Figure S2A). Of note, as expected, we did not see an enrichment for ADA, since depletion of ADA renders HAP1 cells hypersensitive to 3’-dA.

We performed the screen with NUC-7738 at 3 different concentrations (50, 100 and 125 μM). In contrast to the screen with 3’-dA, none yielded an enrichment of ADK (Table S2), confirming a lack of dependence on this gene (Figure 1G). Surprisingly, the phosphoramidase HINT1, a gene known to be involved in purine metabolism, was strongly enriched in all three screens. Depletion of HINT1 by CRISPR/Cas9 in HAP-1 cell lines and in single cell-derived clonal HINT1 knockout cells markedly reduced sensitivity to NUC-7738 but not 3’-dA (Figure 3A-8). As expected, HINT1-depleted clonal knockout cells were capable of forming colonies even after exposure to high concentrations of NUC-7738, but not after treatment with 3’-dA. Additionally, NUC-7738 induced apoptosis was noticeably attenuated upon HINT1 deletion (Figure S2D).

To explore the impact of HINT1 on sensitivity to NUC-7738, we grouped cancer cell lines into low, medium and high according to their relative HINT1 mRNA expression levels and treated them with NUC-7738 or 3’-dA (Figure S2E). We observed no correlation between expression of HINT1 and sensitivity to NUC-7738 (r=0.28, p=0.26) or 3’-dA (r=0.19, p=0.68) (Figure 3C). We then depleted HINT1 in cell lines until only minimal residual levels were detectable on western blotting and again observed no difference in sensitivity to NUC-7738 (Figure 3D). By IHC we observed ubiquitous expression of HINT1 in most of the tested cancer tissues (Figure S3), which is in line with the expression pattern reported in the protein atlas (https://www.proteinatlas.org). These findings indicate that even low levels of HINT1 are sufficient for the activation of NUC-7738.

**Core target genes underpin the activity of both 3’-dA and NUC-7738**

To compare the impact of 3’-dA and NUC-7738 on transcription, we performed RNA sequencing on cells after treatment at the relative IC50 and IC90 concentration for each compound (Figure 4). A principal component analysis showed clear separation between treated and non-treated samples and a clear distinction in gene expression between them (Figure S4A-C). Whilst 3’-dA treatment induced minimal (FC<2) but significant changes in multiple genes, NUC-7738 caused greater change to a smaller number of genes (FC>2). There was significant overlap of 91 genes that were
differentially expressed by more than two-fold at all four conditions, forming a core set of NUC-7738 and 3’-dA-affected genes (Figure 4B). Of note, NUC-7738 and 3’-dA had greatest impact on the expression of coding mRNAs, whilst less than 30% were non-coding or pseudogenes (Figure S4D).

**Both NUC-7738 and 3’-dA down-regulate genes involved in cell survival**

To understand whether genes of certain pathways were affected by drug treatment, we conducted pathway and gene set enrichment analyses (Figure 4C-E). In general, we only observed gene set enrichments in downregulated genes, apart from the coagulation pathway which was up-regulated after both treatments (Figure S4E). Amongst the down-regulated transcripts, we found 19 pathways that were enriched after both 3’-dA and NUC-7738 treatment (Figure 4D). These transcripts are involved in cell growth signalling (PI3K-AKT-MTOR, NOTCH or WNT-Beta-Catenin Signalling), cell division (Mitotic Spindle, G2M Checkpoint) and DNA repair (UV-response_U or DNA Repair) (Figure 4E).

**NUC-7738 inhibits the nuclear translocation of NF-κB-p65**

Interestingly, amongst affected pathways, the NF-κB signalling cascade was one of the most strongly enriched after 3’-dA and NUC-7738 treatment (Figure 5A-B). NFκB builds a critical link between inflammation and cancer progression, which makes it an attractive therapeutic target (36–38). To validate the impact of 3’-dA and NUC-7738 on NF-κB signalling, cells were stably transfected with a NF-κB reporter construct and activation of NF-κB was calorimetrically quantified. NUC-7738 and, to a lesser extent, 3’-dA treatment significantly reduced NF-κB activation (Figure 5C). Using a NF-κB reporter cell line, a reduction in the nuclear translocation of NF-κB was also observed after treatment with NUC-7738 (Figure 5D). Similar results were also obtained in the NUC-7738-treated renal cancer cell lines 786-O (IC₅₀=13 μM) and UM-RC-2 (IC₅₀=4 μM) when fluorescence stained for intracellular RELA (p65) (Figure S5A). To further validate this observation in tumour cells, we treated tissue slices of freshly obtained human clear cell renal carcinoma (ccRCC) with increasing concentrations of NUC-7738 and observed a dose-dependent decrease in nuclear p65 and an increase in tumour cell apoptosis (Figure 5E and S5B).

**Preclinical toxicity and toxicokinetics of NUC-7738**

Owing to species-specific serum esterases which rapidly degrade the phosphoramidate moiety, NUC-7738 is unstable in rat and mouse serum, with a half-life of <2 minutes in the rat compared to 424 minutes in human (39,40). Rodent models therefore cannot be used to assess toxicity and toxicokinetics of NUC-7738 and its metabolites (3’dA and 3’deoxyinosine). Instead, beagle dogs were administered NUC-7738 in dose-escalation cohorts. Each cohort received NUC-7738 by slow IV
infusion followed by a 2-day break for 4 cycles in total. This was followed by a 2-week treatment-free period. Toxicokinetic parameters were evaluated on day 1 and at the end of the last dosing day (day 26) according to a serial profile. No significant differences (where significance is considered to be >2-fold change) in NUC-7738 systemic exposure (as mean Cmax and AUC 0-t ) were observed following single and repeated administrations at all doses tested. No significant gender differences in systemic exposure were observed. Exposure to metabolite 3’-deoxyinosine at all doses and on both occasions and genders, in terms of AUC 0-t, was generally comparable to that of NUC-7738 (mean ratio metabolite/parent was 1.32), whereas in terms of Cmax , metabolite exposure was consistently lower than parent (mean ratio metabolite/parent was 0.42). Median Tmax for NUC-7738 and 3’-deoxyinosine occurred at 0.25 hours after the end of infusion. Mean plasma clearance (Cl) for NUC-7738 at all doses and on both TK occasions in both genders was in the range 14,700-32,000 ml/h/kg, with mean distribution volume at steady state (Vss ) ranging from 7,320-21,100 ml/kg whilst the mean elimination half-life (t½) was between 0.22 and 0.46 hours. In conclusion, NUC-7738, when administered for a total of 4 cycles (4 weeks) at 5, 10 and 20 mg/kg/day, by intravenous slow injection, induced changes in the liver and bone marrow at 20 mg/kg/day. Based on the results of this study, the highest non-severely toxic dose (HNSTD) was considered to be 10 mg/kg/day (mean AUC(0-t) 638 ng.h/mL and mean Cmax 1560 ng/mL for NUC-7738, based on sex mean at day 26 values).

**NUC-7738 is successfully metabolised to 3’-dATP in patients**

These data supported the initiation of NuTide:701, a first-in-human Phase I dose-escalation/expansion study assessing the safety/tolerability, pharmacokinetics and pharmacodynamics of NUC-7738 in patients with advanced solid tumours that were resistant to conventional treatment. This study is currently ongoing at 3 centres in UK: Edinburgh, Newcastle and Oxford. As of 1 June 2021, 28 patients with advanced cancers have been enrolled and received escalating doses of 14-900 mg/m² (IV infusion from 30-120 mins) once weekly until dose limiting toxicity or disease progression occurs. Intra-patient dose escalation ensures those starting at lower dose levels of NUC-7738 are continuously moved to higher doses once safety has been established. The commonest cancers to be included are immunotherapy-resistant melanoma (n=8), colorectal cancer (n=3), gastric and lung cancer (n=2 each). NUC-7738 has so far been well tolerated with no dose-limiting toxicities reported. Encouraging signals of anti-tumor activity and prolonged disease stabilization were observed, particularly amongst patients with immunotherapy-resistant melanoma(41). Pharmacokinetic measurement of metabolites, in serum as well as peripheral blood mononuclear cells (PMBC) collected at regular timepoints after infusions, has revealed that NUC-7738 has a predictable plasma PK profile, with a dose proportional increase in Cmax and AUC. Across
7 patients treated with doses of NUC-7738 ranging from 400-900 mg/m², high intracellular levels of 3’-dATP were detected in PBMCs 0.25 hours after the start of infusion and maintained for at least 48 hours, demonstrating successful uptake of NUC-7738 into PBMCs, release of the 3’-dAMP nucleotide and efficient conversion to 3’-dATP (Figure 6A). A post-treatment biopsy was taken from a patient with melanoma and compared to their archived specimen collected prior to enrolling in the clinical trial. The pre-NUC-7738 specimen shows presence of HINT1 and abundant cytoplasmic and nuclear NF-κB. The post-treatment sample shows some reduction in HINT1 and redistribution of p65 subunit of NF-κB to the cell periphery (Figure 6B). Transcriptional profiling of the specimens using RNA sequencing identified more than 1,069 genes which were at least 2-fold differentially expressed after treatment with NUC-7738 (Figure 6C and S6A-C). Interestingly, TNF alpha signalling via the NF-κB pathway was significantly down regulated (Figure S6B) with a reduction ranging from 7-40 fold in expression of some of its pro-oncogenic target genes (e.g. JUNB, FOS, DUSP1) and melanoma related genes (e.g. EGR3, NR4A3, CCN1) (Figure S6D). Of note, our results in leukaemia derived HAP1 cells, acute monocytic leukaemia derived THP1 cells and the human clear cell renal carcinoma ex vivo model overlap with those found in patient-derived melanoma specimens (Figure S6E), indicating that the effect on NF-κB signalling may be a universal feature of NUC-7738 treatment.

**Discussion**

The natural nucleoside 3’-dA or cordycepin is an ancient medicine with a broad spectrum of purported health-related benefits and widely used as a food supplement and herbal remedy. Studies conducted by ourselves and others have demonstrated that 3’-dA has potent anti-cancer effects but its half-life is limited to 1.6 minutes in plasma due to its rapid degradation by the ubiquitous enzyme ADA (42). For this reason, 3’-dA is not used as an anti-cancer therapy. Here we described the synthesis of NUC-7738, a new ProTide comprised of 3’-dA monophosphate (3’-dAMP) fused to a phosphoramidate (aryl, ester and amino acid) moiety with the aim of overcoming these biochemical properties. As ProTide modification is designed to enhance stability and increase the intracellular delivery of the active nucleotide analogue, side-by-side comparisons were made between NUC-7738 and 3’-dA to determine proof-of-concept and to evaluate mechanisms of resistance and activation.

NUC-7738 was demonstrated to have 7-40-times greater potency than 3’-dA across a range of cancer cell lines and induced cell death by apoptosis. As expected, whereas 3’-dA was dependent on ADA, hENT and ADK for its stability, uptake and initial phosphorylation, NUC-7738 was resistant to breakdown by ADA, and did not require ADK for activation nor hENT1 for uptake. This supports the
hypothesis that the phosphoramidate moiety protects d’-AMP from ADA-driven deamination, bypasses the initial ADK-dependent monophosphorylation step and allows cell entry via a hENT-independent mechanism. No other transporter mutations were associated with decreased NUC-7738 uptake in our genetic screen, suggesting its uptake is not predominantly dependent on a single transporter. Here we show that the phosphoramidase HINT1 is required to activate NUC-7738 consistent with previous studies showing HINT1 can cleave the P-N bond of ProTides, a step required for the intracellular release of the active monophosphate (43). Importantly, HINT1 protein is present across numerous cancer types and its depletion was not dose-limiting, implying that even low levels of HINT1 are sufficient for NUC-7738 activation. In addition, we do not have any evidence that increased expression of HINT-1 correlates with increased toxicity in organs or tissue. This is in line with data from the clinical trial where we observed a predictable distribution of PK metabolites across all patients regardless of their tumour type and no difference between toxicity signals between them. Moreover, we have not yet observed side effects common to nucleoside analogues (including anemia, leukopenia, gastrointestinal and thrombocytopenia) in study participants, suggesting that either normal tissue is less affected or that we are still outside the toxicity window in dosing terms.

NUC-7738 induced a cytotoxic effect on a wide range of cancer cell lines with an IC$_{50}$ in the low μM range (<10 μM). RNA sequencing analysis revealed a transcriptome-wide down-regulation of signalling pathways involved in cell survival and proliferation, particularly the NF-κB pathway. This cascade is active in many cancers, due to phosphorylation and inactivation of the NF-κB inhibitor IκBα, allowing the NF-κB p50-p65 heterodimer to enter the nucleus and drive transcription of pro-proliferative factors including TNF-α (38,44,45). Although rationally-designed NF-κB inhibitors have been developed, none have yet reached the clinic due to inefficacy or significant toxicity (36–38,46,47). In contrast, naturally-derived agents such as curcumin, resveratrol and 3’-dA (48) have demonstrated NF-κB attenuation by blocking either the nuclear translocation of p65 or its DNA-binding but invariably pose pharmacokinetic limitations due to their poor bioavailability. By applying Protide chemistry to the 3’-dA, its bioavailability was enhanced whilst its native mechanism of action was retained. Subsequent and more detailed mechanistic studies, beyond the scope of this manuscript, will determine its exact target within the NF-κB cascade.

The results presented here, together with the encouraging pharmacokinetic data from the ongoing Phase I trial, show that the ProTide NUC-7738 is resistant to ADA degradation and is capable of releasing active 3-dAMP into cells, where it is rapidly converted to the key anti-cancer metabolite 3’-dATP which was detected 2 hours after the start of infusion and has a half-life of approximately 50
hours. NUC-7738 has been well tolerated and has demonstrated encouraging signals of anti-cancer activity in patients with advanced solid tumours (49). These findings provide proof of concept that NUC-7738 overcomes the cancer resistance mechanisms that limit the activity of 3’-dA and support the further clinical evaluation of NUC-7738 as a novel cancer treatment within the growing pantheon of ProTides developed for the treatment of cancer.

Acknowledgments

We thank the Oxford Genomics Centre at the Wellcome Centre for Human Genetics (funded by Wellcome Trust grant reference 203141/Z/16/Z) for the generation and initial processing of the sequencing data. This work was funded in part by NuCana plc. The Oxford Early Phase Clinical Trials Unit, the Edinburgh and Newcastle Trials units are grateful for support from CRUK and Experimental Cancer Medicine Centre (ECMC) funding. We thank Professor Cornelia de Moor (Nottingham University) for discussions about cordycepin and acknowledge the late Professor Chris McGuigan who invented this and other ProTides.

References


Figure legends

Figure 1: NUC-7738, ProTide version 3’-deoxyadenosine, has cytotoxic activity

A) Scheme of the chemical synthesis of 3’-Deoxyadenosine 5’-O-phenyl-(benzyloxy-L-alaninyl)-phosphate (NUC-7738), a functionalized ProTide of 3’-Deoxyadenosine. B) HAP1 cells were treated with different concentrations of 3’-dA or NUC-7738 and cell viability was measured after 48 hours. One representative plot is shown. C) IC$_{50}$ and IC$_{90}$ determination of 3’-dA or NUC-7738 was performed using a non-linear regression model. Mean and SEM of four biological replicates are shown. D) Determination of IC$_{50}$ of 3’-dA or NUC-7738 in gastric, renal, melanoma and ovarian cancer cell lines. Mean and SEM of at least three biological replicates is shown (where no SEM is shown, only 2 biological replicates were performed). E) Gastric or cervical cancer cells were treated with NUC-7738 or 3’-dA for 24 hours, following which cleaved PARP was detected by Western blot. GAPDH was used as a loading control. F) Tera-1 cells were treated with NUC-7738 or 3’-dA for 24 hours. Early and late apoptotic and dead cells were sorted and counted after staining with Guava® Nexin kit. G) Chemical perturbation of known enzymes involved in processing of 3’-dA. HAP1 cells were treated with NUC-7738 and 3’-dA in the presence or absence of the ADA antagonist EHNA, the hENT1 antagonist NBTI, or the ADK inhibitor A134974. The fold change difference in IC$_{50}$ values compared to control is shown as means with SEM (n>3).

Figure 2 Genome wide haploid genetic screen identifies genes necessary for the activity of 3-dA and NUC-7738. A) Flowchart of insertional mutagenesis haploid screen. B) Venn diagram illustrating the overlap of genes found in 3’-dA and NUC-7738 treated samples. C) Bubble plots of four independent experiments. 3’-dA and NUC-7738 treatment was performed at given concentrations. P-value is given on Y-axis and genes sorted by their genomic location on X-axis. Bubble sizes represent the number of unique insertions that were detected.

Figure 3 Validation of top hits from genome wide haploid screen

A) HINT1 was deleted in HAP1 cells using CRISPR/Cas9 technology, as shown by Western blot analysis of HINT1 knockout cells using specific antibodies to HINT1. Wildtype and Knockout cells were treated with either NUC-7738 or 3’-dA. IC$_{50}$ values were determined and the fold change between knockout and wildtype cells was calculated. B) Single cell-derived clonal knockouts for HINT1 (KO1 and KO5) and two wildtype
isogenic cell lines. Western blot analysis of HINT1 knockout cells using specific antibodies to HINT1 is shown. Following treatment with NUC-7738 or 3'-dA, $IC_{50}$ values were determined and the fold change between knockout and wildtype cells were calculated. C) Correlation between $IC_{50}$ of NUC-7738 or 3'-dA and mRNA abundance in different NCI-60 cells is given for ADA, ADK and HINT1. mRNA expression levels are given as z-score calculated across all NCI-60 cell lines. mRNA expression levels were obtained from CellMiner™ v2.4.2. D) Western blot validation of siRNA-mediated HINT1 knockdown in renal cancer cell lines. Wildtype and knockdown cells were treated with either NUC-7738 or 3'-dA. Graph shows the fold change in percentage of viable cells normalised to control (n=3) after treatment with NUC-7738.

**Figure 4: Transcription profiling of HAP1 cells treated with 3'-dA and NUC-7738.** A) Venn diagram summarising the number of differentially expressed genes (padj <0.05 and -2>FC>2) in 3'-dA and NUC-7738 treated samples. B) Expression heatmap of 91 genes commonly differentially expressed in all 4 tested conditions (padj <0.05 and -2>FC>2). C) Gene set enrichment analysis and network mapping using Cytoscape. Genes ranked according to their p-value and GSEA were performed on REACTOME gene sets. Gene overlaps between different pathways are shown. Nodes are GSEA enriched pathways while Edges represent overlapping shared genes between two pathways. D) Venn diagram summarizing number of overlapping enriched pathways by GSEA using Molecular Signature Database collection of HALLMARK gene. E) Summary of top 20 enriched pathways for Hallmark set enrichment analysis of hits for NUC-7738 and 3'-dA treated cells. Green and orange indicate NUC-7738 and 3'-dA, respectively. Circles and triangles indicate dosing at $IC_{50}$ and $IC_{90}$, respectively.

**Figure 5: NUC-7738 and 3'-dA affect the NFκB pathway.** A) Enrichment plots for NF-κB pathway for all four conditions. B) Expression levels of genes found in the leading edge of NF-κB pathway enrichment. Blue indicates downregulation and brown indicates upregulation of transcript. Significance plot indicates whether the gene was significantly differentially expressed. Red stands for padj>0.05 and green padj<0.05. Order of columns correspond with expression heatmap. C) NF-κB activity was measured using the SEAP reporter gene assay in THP-1 cells. NF-κB activity was induced with LPS in the presence or absence of NUC-7738. SEAP production as result of NF-κB activity was measured using the QuantiBlue colorimetric enzyme assay. Values were normalised to untreated LPS stimulated cells. D) NF-κB activity was induced with LPS in the presence or absence of NUC-7738 in NF-κB THP1 reporter cell line. Cells were harvested and fractionated into nuclear and cytosolic fraction. Western Blot analysis using specific antibodies was employed to detect NF-κB p65 (RELA),
nuclear marker Lamin B1 and cytosolic marker GAPDH. E) NF-κB p65 and Caspase 3 in ex vivo tissue treated with NUC-7738 for 24 hours. NF-κB p65 was seen in the nucleus of controls but disappeared after treatment with NUC-7738, and an increase in Caspase 3 was observed after 24 hours.

Figure 6: Clinical validation of the activity of NUC-7738
A) Intracellular levels of 3’-dATP, 3’-dAMP and NUC-7738 were measured in the PBMCs from 7 patients who received treatment with NUC-7738 at a dose of 400-900 mg/m² in the ongoing NuTide:701 clinical study. High intracellular levels of 3’-dATP were detected 0.25 hours after the start of infusion and were maintained for at least 48 hours. B) Immunohistochemical staining for HINT1 and NF-κB p65 subunit of pre-and post-treated tissue samples obtained from a melanoma cancer specimen. C) MA Plot summarising transcriptomic profiling of pre-and post-treated tissue samples. Red dots indicate genes passing a FDR<10%.
Figure 2

A) Gene Trap Mutant Library → Drug treatment → Next Generation Sequencing → Gene Trap

B) 3′-dA

NUC-7738

105

49

331

C)

3′-dA

NUC-7738 (50 μM)

NUC-7738 (100 μM)

NUC-7738 (125 μM)
Figure 3

A) HINT1 and Lamin

B) NUC-7738 (µM) and 3'-dA (µM)

C) 3'-dA (µM) and NUC-7738 (µM)

D) UO31, NCI-786, CAKI-1, A498

Fold Change to control siRNA (Viability)

NUC-7738 (100 µM, 48h)
Figure 5

A) NUC-7738 and 3'-dA

C) NFκB Reporter Assay in THP1 cells

D) Western Blot Analysis

E) H&E Staining

Downloaded from clinicanerres.aacrjournals.org and published by the American Association for Cancer Research. This article is in press and has been accepted for publication but has not yet been copyedited and formatted.
The novel nucleoside analogue ProTide NUC-7738 overcomes cancer resistance mechanisms in vitro and in a first-in-human Phase 1 clinical trial

Hagen Schwenzer, Erica De Zan, Mustafa Elshani, et al.

*Clin Cancer Res* Published OnlineFirst September 8, 2021.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-21-1652

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2021/09/04/1078-0432.CCR-21-1652.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

---

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2021/09/08/1078-0432.CCR-21-1652. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.