Clinical activity of ripretinib in patients with advanced gastrointestinal stromal tumor harboring heterogenous KIT/PDGFRA mutations in the phase 3 INVICTUS study

Sebastian Bauer*1,2, Michael C. Heinrich*3,4, Suzanne George5, John R. Zalcberg6, César Serrano7, Hans Gelderblom8, Robin L. Jones9, Steven Attia10, Gina D’Amato11, Ping Chi12, Peter Reichardt13, Julie Meade14, Ying Su14, Rodrigo Ruiz-Soto14, Jean-Yves Blay15, Margaret von Mehren16, Patrick Schöffski17

*Dr. Bauer and Dr. Heinrich are serving as co-lead authors

1Department of Medical Oncology, Sarcoma Center/West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany; 2German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany; 3VA Portland Veterans Health Care System, Portland OR, USA; 4OHSU Knight Cancer Institute, Portland, OR, USA; 5Dana-Farber Cancer Institute, Boston, MA, USA; 6Monash University and Alfred Health, Melbourne, VIC, Australia; 7Vall d’Hebron Institute of Oncology, Barcelona, Spain; 8Leiden University Medical Center, Leiden, Netherlands; 9Royal Marsden and Institute of Cancer Research, London, UK; 10Mayo Clinic, Jacksonville, FL, USA; 11Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; 12Memorial Sloan Kettering Cancer Center, New York, NY, USA; 13Sarcoma Center, Helios Klinikum Berlin-Buch, Berlin, Germany; 14Deciphera Pharmaceuticals, LLC, Waltham, MA, USA; 15Centre Leon Berard, Lyon, France; 16Fox Chase Cancer Center, Philadelphia, PA, USA; 17University Hospitals Leuven, Department of General Medical Oncology, Leuven Cancer Institute, Leuven, Belgium

Running title: Efficacy of ripretinib against range of KIT/PDGFRA mutations
Keywords: Gastrointestinal stromal tumor (GIST), ripretinib, mutations, KIT, PDGFRA

Funding: This study was sponsored by Deciphera Pharmaceuticals, LLC, Waltham, MA, USA.

Corresponding author: Sebastian Bauer

West German Cancer Center
Internal medicine clinic (tumor research)
Hufelandstraße 55
D – 45147, Essen
Phone: +49 (0) 201 / 723 2112
Fax: +49 (0) 201 / 723 5996
Sebastian.Bauer@uk-essen.de

Conflict of interest disclosures

SB serves in an advisory/consultancy role for Blueprint Medicines, Bayer, Lilly, Deciphera Pharmaceuticals, Nanobiotix, Daiichi Sankyo, Exelixis, Janssen-Cilag, ADC Therapeutics, Mundipharma, and GSK; has received honoraria from Novartis, Pfizer, Bayer, PharmaMar, and GlazoSmithKline; has received research funding from Blueprint Medicines, and Novartis, and his institution has received research funding from Incyte. MCH serves in a consultancy role for Novartis, Deciphera Pharmaceuticals, Blueprint Medicines; receives royalties from Novartis; receives grant funding from Blueprint Medicines and Deciphera Pharmaceuticals; has received travel, accommodations, and expenses from Blueprint Medicines, and Deciphera Pharmaceuticals; and received partial salary support from a Veterans Affairs Merit Review Grant (I01BX005358) and a grant from the National Cancer Institute (R21CA263400). SG serves in an advisory/consultancy role for AstraZeneca, Bayer, Blueprint Medicines, Daiichi Sankyo,
Deciphera Pharmaceuticals, Eli Lilly, and Exelixis; has a leadership role in Alliance Foundation; receives licensing royalties from Wolters Kluwer Health; is a shareholder/stockholder of Abbott Labs and Allergan; and her institution receives research support from Bayer, Blueprint Medicines, Deciphera Pharmaceuticals, Novartis, and Pfizer. **JRZ** serves in an advisory/consultancy role for Merck Serono, Targovax, Merck Sharp & Dohme, Halozyne, Lipotek, Specialised Therapeutics, CEND, Deciphera Pharmaceuticals; owns stock in GW Pharmaceuticals, Aimmune, Vertex, Alnylam, Biomarin, Opthea, Amarin, Concert Pharmaceuticals, Frequency Therapeutics, Global Blood Therapeutics, Gilead, Madrigal Pharmaceuticals, Sangamo Biosciences, Acceleron Pharmaceuticals, Zogenix, Myovant Sciences, Orphazyme, Moderna Therapeutics, and TWST; has received honoraria from Specialised Therapeutics, Merck Serono, Targovax, Halozyne, Gilead Sciences, and Deciphera Pharmaceuticals; and his institution has received research funding from Merck Serono, Bristol-Myers Squibb, AstraZeneca, Pfizer, IQvia, Mylan, Ipsen, Eisai, Medtronic, and MSD Oncology; and has received travel, accommodations, expenses from Merck Serano, AstraZeneca, and Merck Sharp & Dohme. **CS** serves in an advisory/consultancy role for Deciphera Pharmaceuticals, Blueprint Medicines, and Immunicum; is a member of the speaker’s bureau for Blueprint Medicines, and his institution has received research funding from Pfizer, and Karyopharm Therapeutics. **HG** institution has received grant funding from Daiichi Sankyo, Five Prime, Novartis, Deciphera Pharmaceuticals, Eli Lilly, Roche, Eisai, Debio, Boehringer Ingelheim, Pfizer, Amgen, and TEVA. **RLJ** has received honoraria and serves in an advisory role for Adapimmune Therapeutics, Athenex, Bayer, Boehringer Ingelheim, Blueprint Medicines, Clinigen Group, Daiichi Sankyo, Deciphera Pharmaceuticals, Eisai, Epizyme, Immunedesign, Eli Lilly, Merck, Pharmamar, UptoDate; and serves in an advisory role for Boehringer Ingelheim, and Tracon; and has received funding from MSD. **SA** has received research funding from Desmoid...
Tumor Research Foundation; and his institution has received research funding from AB Science, TRACON Pharma, Bayer, Novartis, Lilly, Immune Design, Karyopharm Therapeutics, Epizyme, Blueprint Medicines, Genmab, CBA Pharma, Merck, Philogen, Gradalis, Deciphera Pharmaceuticals, Takeda, Incyte, Springworks, Adapimmune, Advenchen Laboratories, Barvarian Nordic, BTG, GlaxoSmithKline, and FORMA Therapeutics. GD serves in an advisory/consultancy role for Deciphera Pharmaceuticals. PC serves in an advisory role for Deciphera Pharmaceuticals, Exelixis, and Zailab; has received grant funding from Deciphera Pharmaceuticals, Exelixis, Novartis, and Array; and has licensing royalties and owns stock in ORIC. PR serves in an advisory/consultancy role for Clinigen Group, Roche, Bayer, Deciphera Pharmaceuticals, MSD, and Bristol-Myers Squibb; has received honoraria from Novartis, Pfizer, PharmaMar, Lilly, and Amgen; and his institution has received research funding from Novartis. JM is employed by Deciphera Pharmaceuticals and owns stock in Deciphera Pharmaceuticals. YS is employed by Deciphera Pharmaceuticals. RR-S is employed by Deciphera Pharmaceuticals and owns stock in Deciphera Pharmaceuticals and Immunogen. J-YB serves in an advisory/consultancy role and has received honoraria from Novartis, Bayer, Pfizer, Deciphera Pharmaceuticals, Pharmamar, Ignyta, and Roche. MvM serves in an advisory/consultancy role for Deciphera Pharmaceuticals, Blueprint Medicines, and Exelexis; has received travel/accommodation expenses from Deciphera Pharmaceuticals and NCCN; and her institution has received funding from Arog, ASCO, Blueprint Medicines, Deciphera Pharmaceuticals, Garadalis, GenMab, Novartis, and Solarius. PS received honoraria from Deciphera Pharmaceuticals, Blueprint Medicines, and Boehringer Ingelheim; serves in an advisory/consultancy role for Deciphera Pharmaceuticals, Ellipses Pharma, Blueprint Medicine, Transgene, Exelixis, Boehringer Ingelheim, Medscape, Guided Clarity, Adapimmune, IntelliSphere, and Advanced Medical; his institution has received research funding from
CoBioRes NV, Eisai, G1 Therapeutics, Novartis, and PharmaMar; and has received travel, accommodations, and expenses from Boehringer Ingelheim; and his institution has received them from MSD and Ipsen.

Word count: 4015 (includes translational relevance, abstract, and main text)

Figures/tables: 6
Translational relevance

KIT/PDGFRA mutations are early oncogenic events in gastrointestinal stromal tumors (GIST) and are key oncogenic metastatic drivers. Clonal evolution of mutations within multiple exons that encode the functional domains of tyrosine kinase receptors have been observed leading to both intra- and inter-tumor mutational heterogeneity, representing a major mechanism of resistance to existing tyrosine kinase inhibitors (TKIs). Here we describe the genomic landscape of KIT-related resistance based on an exploratory analysis from INVICTUS. This study investigated KIT/PDGFRA mutations using both tumor tissue and liquid biopsies in patients with advanced GIST who were previously treated with at least imatinib, sunitinib, and regorafenib. This is the largest study to reflect the spectrum and extent of mutational heterogeneity in pretreated GIST, underscoring the broad inhibitory activity of ripretinib in this treatment line.
Abstract

Purpose

Most patients with gastrointestinal stromal tumor (GIST) have activating mutations in KIT/PDGFRA and are initially responsive to tyrosine kinase inhibitors (TKIs). The acquisition of secondary mutations leads to refractory/relapsed disease. This study reports the results of an analysis from the phase 3 INVICTUS study (NCT03353753) characterizing the genomic heterogeneity of tumors from patients with advanced GIST and evaluating ripretinib efficacy across KIT/PDGFRA mutation subgroups.

Patients and Methods

Tumor tissue and liquid biopsy samples that captured circulating tumor DNA were collected prior to study enrollment and sequenced using next-generation sequencing. Subgroups were determined by KIT/PDGFRA mutations and correlation of clinical outcomes and KIT/PDGFRA mutational status was assessed.

Results

Overall, 129 patients enrolled (ripretinib 150 mg once daily, n=85; placebo, n=44). The most common primary mutation subgroup detected by combined tissue and liquid biopsies were in KIT exon 11 (ripretinib, 61.2%; placebo, 77.3%) and KIT exon 9 (ripretinib, 18.8%; placebo, 15.9%). Patients receiving ripretinib demonstrated progression-free survival (PFS) benefit vs placebo regardless of mutation status (hazard ratio 0.16) and in all assessed subgroups in Kaplan-Meier PFS analysis (exon 11, P <0.0001; exon 9, P=0.0023; exon 13, P <0.0001; exon 17, P <0.0001). Among patients with wild-type KIT/PDGFRA by tumor tissue, PFS ranged from 2–23 months for ripretinib vs 0.9–10.1 months for placebo.
Conclusions

Ripretinib provided clinically meaningful activity across mutation subgroups in patients with advanced GIST, demonstrating ripretinib inhibits a broad range of $KIT/PDGFR\alpha$ mutations in patients with advanced GIST who were previously treated with 3 or more TKIs.
Introduction

Gastrointestinal stromal tumors (GISTs) are the most common sarcomas of the digestive tract (annual incidence 10–15 per million individuals) and typically occur in the stomach and small intestine, but can arise anywhere in the gastrointestinal tract (1-3). Most GISTs have activating mutations either in receptor tyrosine kinase: KIT (approximately 69%–83% of all GISTs) or platelet-derived growth factor receptor α (PDGFRA, approximately 5%–10% of all GISTs) (4-6). Approximately 15% of GISTs lack a *KIT* or *PDGFR* mutation and are historically classified as *KIT/PDGFR* wild-type (WT) (6); these tumors are also referred to as non-*KIT*/non-*PDGFR*-mutant GIST, as they usually harbor other known oncogenic mutations (proto-oncogene B-Raf [BRAF], neurofibromatosis type-1 [NF1], succinate dehydrogenase deficiency [SDHX]) (7,8). *KIT/PDGFR* are dual switch-containing kinases (9,10). These switch mechanisms regulate cellular *KIT/PDGFR* conformations and catalytic activities (9). Primary mutations in the *KIT* gene are most commonly found in the juxtamembrane domain inhibitory switch (exon 11, ~70%) or the extracellular domain (exon 9, ~10%) (11). Mutations in the KIT switch pocket adjacent to the ATP-binding pocket (exon 13, ~1%) and the KIT activation switch (exon 17, ~1%) are less frequent (11). The most common *PDGFR* primary mutations occur in the activation switch (exon 18, ~6%) (11). These mutations in the conformation-controlling switch mechanism, regardless of location, disrupt the auto-inhibited forms of KIT and PDGFRA kinases and cause constitutive, ligand-independent kinase activity and signaling, ultimately leading to tumor growth and metastasis (12-14).

The current treatment algorithm for patients with advanced, inoperable GIST includes the sequential use of tyrosine kinase inhibitors (TKIs) such as imatinib, sunitinib, and regorafenib, which are approved first-, second-, and third-line treatments, respectively (15,16). These established treatments target the “switch-off” inactive conformation of the kinase by...
competitively binding to the ATP-binding site (17-19). In particular, some specific PDGFRA mutations, mostly the exon 18 D842V substitution mutation, are highly resistant to imatinib treatment. Patients with these mutations may receive the recently approved TKI avapritinib as first-line treatment, as it is approved for patients with unresectable or metastatic GIST that have a PDGFRA exon 18 mutation (4,20,21).

Secondary mutations typically arise during treatment and can confer resistance to the therapeutic agent. Specifically, secondary KIT mutations involving the switch pocket adjacent to the ATP-binding site (exons 13 and 14) or the activation switch (exons 17 and 18) can directly hinder binding of imatinib or stabilize KIT oncoprotein in the active conformation (22). These resistance mutations develop within switch domains, driving KIT/PDGFRA to an active state. Sunitinib and regorafenib inhibit some resistance mutations, but neither cover the full spectrum of mutations (23-25). Moreover, patients frequently develop separate resistance clones that harbor different resistance mutations, leading to relatively short disease control in second- and third-line treatments for GIST (23-27).

Ripretinib was approved by the US Food and Drug Administration in May 2020 for the treatment of adult patients with advanced GIST who received prior treatment with three or more kinase inhibitors, including imatinib (28). In contrast to the mechanism of action of the first three lines of therapy, ripretinib is a switch-control TKI that broadly inhibits KIT and PDGFRA kinase signaling through a dual mechanism of action (9,29). Designed to bind to both the switch pocket and the activation switch to lock the kinase in the inactive state, ripretinib prevents downstream signaling and cell proliferation and provides broad inhibition of KIT and PDGFRA kinase activity brought on by both primary mutations and secondary mutations that lead to drug-resistant GIST (29). In the phase 3 INVICTUS study (NCT03353753), patients
receiving ripretinib had a statistically significantly longer median progression-free survival (mPFS, 6.3 months) compared with patients receiving placebo (1.0 month) (29).

Tumor tissue biopsy is the traditional gold standard of genotyping in patients with GIST. However, due to the invasive procedures that carry the risk of complications and the time-consuming nature of acquiring tumor tissue biopsies, liquid biopsy that captures circulating tumor DNA (ctDNA) has been used in research in recent years and has demonstrated feasibility and accuracy in detecting KIT/PDGFRα mutations in patients with GIST (30-32).

The objectives of this study were to demonstrate the utility of tissue and liquid biopsy in detecting KIT/PDGFRα mutations in patients with advanced GIST, characterize the genomic heterogeneity of tumors from patients with advanced GIST enrolled in the INVICTUS trial, and correlate the clinical benefit of ripretinib with baseline mutations.

Methods

Patient population

The study enrolled patients aged 18 years or older with diagnosed GIST and at least one measurable lesion according to modified Response Evaluation Criteria in Solid Tumors version 1.1 (mRECIST 1.1). Included patients had progressive disease on or documented intolerance to at least imatinib, sunitinib, and regorafenib and an Eastern Cooperative Oncology Group (ECOG) score of 0–2. Patients were excluded from the study if they underwent any anticancer therapy within 14 days of starting the study, had uncontrolled hypertension, or had a left ventricular ejection fraction <50% at screening. Full inclusion and exclusion criteria can be found in the supplementary data and have been previously described (29).

Study design and treatment
INVICTUS is an international, multicenter, randomized, double-blind, placebo-controlled phase 3 trial in 129 patients who received at least three prior anticancer therapies for advanced GIST. Patients were randomized 2:1 to receive ripretinib 150 mg once daily or placebo until disease progression, as determined by blinded independent central review using mRECIST criteria. Randomization was stratified by number of prior anticancer therapies (3 or ≥4) and ECOG score (0 vs 1 or 2), but not by KIT/PDGFRα mutation status. The study design and patient disposition for this trial has been published previously (29). This study was conducted in accordance with the Declaration of Helsinki and the International Council for Harmonization Guidelines for Good Clinical Practice. All patients were capable of understanding and complying with the protocol and provided informed written consent to participate in the study. The protocol, protocol amendments, and informed consent documents were approved by the institutional review board or ethics committee at each site before beginning the study.

Outcomes

The primary efficacy outcome for the INVICTUS trial was PFS. Characterization of mutational status and retrospective correlation between baseline mutation subgroups and efficacy were exploratory outcomes. PFS was assessed for each baseline mutational subgroup, detected by combining results from the tissue and liquid biopsies.

Sample collection and sequencing analytics

Fresh tumor tissue samples were collected during screening prior to beginning the study drug (baseline). Archival tumor tissue samples could be used as long as no anticancer therapy was administered after the sample was collected. Additional tumor tissue samples may have been collected during the course of the trial (while on study drug) to be used for further
molecular testing. However, the data presented here reflect only biopsy samples collected prior
to ripretinib treatment. Tumor tissue specimens were analyzed using a next-generation
sequencing (NGS), FDA-approved 324-gene assay, FoundationOne (Foundation Medicine, Inc.,
Cambridge, MA). Mutations reported in this manuscript are categorized as known or likely
cancer-driving alterations and genomic signatures by the assay (33).

Liquid biopsy samples (plasma ctDNA) were collected at cycle 1 day 1 prior to the first
dose of study drug (baseline), at the start of every other 28-day cycle, and at the end of
treatment. Samples were analyzed via an NGS 73-gene FDA-approved liquid biopsy assay,
Guardant360 (Guardant Health, Inc., Redwood City, CA). This assay reports mutations in a
panel of genes that are frequently mutated in cancer and align with the mutations reported by
the FoundationOne assay (34). All variants reported by the assay are ≥0.02% mutant allele
frequency.

Data analysis

Analysis was conducted for the entire intent-to-treat population (N = 129) until data
cutoff (March 9, 2020). Continuous variables were summarized using descriptive statistics while
categorical variables were summarized using frequencies and proportions. Time-to-event data
were summarized via Kaplan-Meier methodology with associated two-sided 95% confidence
intervals (CIs). A two-sided stratified log-rank test (0.05 significance level) was used to evaluate
treatment difference. Hazard ratios (HR) were obtained using a Cox regression analysis
adjusted for covariates and the 95% CIs were obtained using the Wald method. PFS was
analyzed only during the double-blind treatment period.

Primary mutations subgroups are presented as detected in tissue, liquid, and combined
biopsies. KIT exon 9, KIT exon 11, or PDGFRα mutations were deemed as primary mutations.
Any KIT mutations detected in addition to primary KIT exon 9 or KIT exon 11 in a patient were considered secondary mutations. In the absence of a KIT exon 9/exon 11 mutation, patients were categorized as "other" KIT primary subgroup.

Results

Primary mutation subgroups detected in baseline tissue, liquid, and combined biopsies

A total of 129 patients were randomized to either the ripretinib group (n = 85) or the placebo arm (n = 44). Patient demographics and clinical characteristics were published previously (29). Overall, 128 tumor samples were collected (Figure 1); 119 during the screening period and 9 prior to study screening. Optional post-treatment tumor tissue samples were collected in only two patients and were not analyzed for this manuscript. Most tissue samples were obtained from metastatic lesions. Tissue biopsy detected a single KIT mutation in 34 patients, 2 KIT mutations in 49 patients, and ≥3 KIT mutations in 16 patients. The most common primary mutation subgroup in either treatment arm detected in tissue biopsy was in KIT exon 11 (ripretinib, 55.3% of tumors [n = 47]; placebo, 63.6% [n = 28]) followed by KIT exon 9 (ripretinib, 16.5% [n = 14]; placebo, 13.6% [n = 6], Table 1). Only 3 patients (2.34%), all in the ripretinib arm, had a single PDGFRA mutation (all exon 18, non-D842V); 10 patients (7.75%; 7 in the ripretinib arm and 3 in the placebo arm) were KIT/PDGFRA WT (Table 1). A total of 16 tissue biopsy samples failed sequencing, mostly due to low tumor content (Figure 1).

Liquid biopsy detected a single KIT mutation in 25 patients, while 28 patients had 2 KIT mutations and 37 patients had ≥3 KIT mutations. Similar to tissue biopsy, KIT exon 11 mutations were the most common mutations detected in liquid biopsy (ripretinib, 44.7% [n = 38]; placebo, 63.6% [n = 28]) followed by KIT exon 9 (ripretinib, 14.1% [n = 12]; placebo,
15.9% [n = 7], Table 1). Liquid biopsy detected the same three patients in the ripretinib arm with PDGFRA mutations (Table 1). Liquid biopsy detected primary KIT/PDGFRA mutations in 94 patients, while 28 patients were KIT/PDGFRA-liquid biopsy-negative (22 in the ripretinib arm and 6 in the placebo arm, Table 1). Only 1 liquid biopsy sample failed sequencing (Figure 1). Among the patients (n = 80) with detectable KIT/PDGFRA mutations in both tissue and liquid biopsies, the concordance rate of primary mutation is 93.75% (n = 75). Consequently, the combination of both technologies (tissue and liquid biopsies) allowed for greater detection of mutations (27 patients had 1 KIT mutation, 36 patients had 2 KIT mutations, and 49 patients had ≥3 KIT mutations) and there were fewer samples deemed as not evaluable or not done (tissue biopsy, n = 17; liquid biopsy, n = 8; combined biopsy, n = 5; Table 1).

Baseline KIT mutations detected outside exons 9 or 11

KIT mutations were detected in both tissue and liquid biopsy outside of exons 9 and 11 in the switch pocket adjacent to the ATP-binding pocket (exons 13 and 14) and the activation switch (exons 17 and 18). Exon 17 and exon 13 mutation commonly co-exist with exon 9 or exon 11 mutations (Figure 2). Five different mutations were found in exons 13/14 via tissue biopsy compared with 12 different mutations with liquid biopsy. Fifteen different mutations were found in exons 17/18 via tissue biopsy compared with 26 different mutations with liquid biopsy. When the data were merged, liquid biopsy detected most of the mutations found in tissue biopsy in addition to several unique mutations. Tissue biopsy only detected four mutations that were not detected in liquid biopsy: two K642Q substitutions in exon 13 and two D820E substitutions in exon 17 (Figure 2). The most common mutations detected by both technologies were V654A substitutions in exon 13 (n = 23), N822K substitutions in exon 17 (n = 14), and Y823D substitutions in exon 17 (n = 12, Figure 2).
Efficacy using baseline combined tumor and liquid biopsy data

Efficacy results in the INVICTUS trial were explored by mutation subgroup using combined tissue and liquid biopsy data. Patients were grouped into four subsets based on results of both technologies: any KIT exon 9, any KIT exon 11, any KIT exon 13, and any KIT exon 17. Patients were included in multiple groups if they had mutations in more than one exon (i.e., a patient that has a tumor with KIT exon 11 and exon 17 mutations would fall into both the “any KIT exon 11 group” and the “any KIT exon 17 group”). Patients receiving ripretinib showed PFS benefit over placebo regardless of mutation status (HR 0.16, 95% CI 0.10–0.27) and in all assessed subgroups in Kaplan-Meier PFS analysis (exon 11, P <0.0001; exon 9, P = 0.0023; exon 13, P <0.0001; exon 17, P <0.0001; Figure 3). Moreover, the calculated HRs for each subgroup favored ripretinib treatment over placebo (any KIT exon 11: HR 0.13, 95% CI 0.06–0.24; any KIT exon 9: HR 0.16, 95% CI 0.05–0.51; any KIT exon 13: HR 0.14, 95% CI 0.06–0.34; any KIT exon 17: HR 0.14, 95% CI 0.07–0.29; Figure 4).

Common secondary mutations detected in patients with a KIT exon 11 primary mutation were in exon 13, exon 17, or both exons 13 and 17. The most common secondary mutation detected in patients with a KIT exon 9 primary mutation was in exon 17. The calculated HRs across all of the assessed secondary subgroups within the KIT exon 11 or 9 subgroups favored ripretinib vs placebo (Figure 5). Patients were categorized as KIT/PDGFRα WT if they had no detectable KIT or PDGFRα mutation in tissue biopsy, while patients with no KIT or PDGFRα mutations detected with liquid biopsy were categorized as KIT/PDGFRα-liquid biopsy-negative. KIT/PDGFRα WT patients receiving ripretinib (n = 7) had varying genetic alterations detected in tumor tissue, including SDHA and SDHC, neurofibromatosis type-1 (NF-1) and KRAS mutations, and other pathogenic alterations, such as myeloid cell leukemia 1 (MCL1) amplification. Two of
the seven patients had no alterations identified. **KIT/PDGFRA** WT patients on the ripretinib arm had PFS measurements that ranged from 2 to 23 months (Supplementary Table S1). Among the 10 **KIT/PDGFRA** WT patients, eight were also **KIT/PDGFRA**-liquid biopsy-negative. Of the 2 remaining patients that were considered **KIT/PDGFRA** WT but not **KIT/PDGFRA**-liquid biopsy-negative, liquid biopsy genotyping failed in one patient and an exon 13 mutation was detected in the other patient.

Discussion

The current study is the first genomic characterization of baseline mutations using tissue and liquid biopsy in patients with advanced GIST with disease progression following imatinib, sunitinib, and regorafenib treatment. This study provides a comprehensive genomic landscape of resistance mutations in a ≥fourth-line treatment setting in metastatic GIST. In this exploratory analysis, ripretinib demonstrated clinically meaningful activity against a broad spectrum of mutations in patients with ≥fourth-line advanced GIST, with a heterogenous genetic mutation profile as shown by the PFS benefit of ripretinib vs placebo independent of mutation status. Patients receiving ripretinib who had tumors with any **KIT** exon 9, 11, 13, or 17 mutations showed significant PFS benefit compared with patients with these mutations receiving placebo.

In this analysis, we observed a complex and heterogeneous mutational landscape, which highlights the need for therapies that are effective against a broad spectrum of mutations. The earlier lines of approved therapy for patients with GIST inhibit certain mutations in **KIT** and **PDGFRA**, but do not inhibit all secondary mutations (23-27). Imatinib demonstrated efficacy against different primary mutations including some of the most common mutations, such as **KIT** exon 11 and **KIT** exon 9, and showed variable efficacy with **PDGFRA** exon 18 mutations (non-
D842V) (11,35,36). Imatinib shows reduced efficacy against some primary and many acquired mutations, with secondary mutations in KIT exon 17 and exon 13 being more frequently associated with treatment resistance and KIT exon 9 mutations requiring higher doses of imatinib to achieve optimal PFS (24,26,37). In patients receiving sunitinib, mPFS was significantly longer in patients with KIT exon 9 mutations compared with KIT exon 11 mutations (38). Additionally, patients with secondary mutations in KIT exon 13/14 had better outcomes on sunitinib compared with patients with mutations in KIT exon 17/18 (24). In contrast, third-line treatment with regorafenib demonstrated clinical benefit in patients with secondary KIT exon 17 mutated tumors (39). This clinical observation has been recapitulated using a mutagenesis-screen that showed complementary activity of sunitinib and regorafenib, with neither of them inhibiting mutations affecting KIT exon 17/18 codon D816 (23).

In the current study, when compared with placebo, ripretinib demonstrated improved efficacy in heavily pretreated patients with tumors harboring KIT exon 9 and exon 11 mutations. While the numbers were small, ripretinib was also more effective than placebo in patients in whom mutations in KIT exon 13 or KIT exon 17 were found. This finding is highly suggestive of the broad clinical activity of ripretinib, based on its different binding mode and activity against both activation loop and switch pocket mutations, which are associated with variable efficacy for other TKIs (24). It is important to emphasize, however, that treatment efficacy cannot be predicted solely on the presence of secondary mutations and it is not clear that ripretinib is equally potent against every resistance mutation. Both the number and allelic frequencies of different resistance mutations in liquid biopsies may not be representative of the actual distribution in all tumor cells. In addition, various genetic alterations in KIT/PDGFRα WT patients were detected, including SDHA, SDHC, NF-1, KRAS, and MCL1. In particular, some cases of SDH-mutant GIST exhibit a slower, indolent growth (8). Disease stabilization as
measured by mRECIST may represent the natural course of the disease in KIT/PDGFRA WT patients and thus explain the PFS of 10 months in a patient in the placebo arm with genetic alterations in SDHA/TP53. Consequently, activity of ripretinib in KIT/PDGFRA WT patients cannot be concluded from our series and will require further study with more patients. Nonetheless, our findings using state-of-the art NGS plasma sequencing in fourth-line GIST demonstrated no evidence of secondary resistance KIT mutations that would preclude clinical benefit with ripretinib treatment.

The current study utilized two different technologies in order to characterize mutational status: genetic analysis based on traditional tumor tissue biopsy and liquid plasma ctDNA biopsy. The combination of these two technologies revealed a greater range of KIT mutations in tumors of heavily pretreated GIST patients. There are, however, pros and cons to both tissue and liquid biopsy methodology. Tissue biopsy is still considered the traditional gold standard methodology in clinical practice, while liquid biopsy is most commonly utilized for research purposes in sarcomas including GIST (30,40). Archival tumor tissue is not always available and can be time consuming to retrieve. Not all tumors can be easily and safely biopsied. Moreover, although tissue biopsy is associated with high sensitivity and specificity, sampled tissue collected may not always reflect the overall frequency and spectrum of intra- and interlesional resistance mutations (40).

Liquid biopsy is noninvasive and represents minimal burden to the patient. While tissue biopsy may be limited to easily accessible tumor tissue, and potential low tumor content due to necrosis, liquid biopsy has the potential to detect ctDNA from all tumors that shed into the circulation, potentially providing more information regarding tumor heterogeneity. However, low tumor shedding can result in a high false negative rate in this type of biopsy (30,40). Conversely, there may be a risk of false positive findings when combining the two biopsy
methods. In the context of resistance mutations in GIST, however, only a few hotspots are relevant in KIT.

In addition, it is unclear how observed mutation allele frequency relates to the underlying clone size in the patient and whether the most frequent resistance mutations found by liquid biopsy reflect the most common mutation in terms of tumor mass. In the NAVIGATOR trial, ctDNA detection correlated with the sum of the target lesions (41). In the current study, however, we did not attempt to correlate ctDNA detection with tumor burden because tumor measurement per mRECIST is not equivalent to total tumor burden. Consequently, the use of both traditional tumor biopsy and liquid biopsy demonstrated the heterogeneity of KIT mutations in individual patients, which may not always be captured when using only one modality of tumor genomic analysis.

Additional limitations of this exploratory analysis include that patients were not randomized according to the mutational status of KIT/PDGFRA genes, and the small sample sizes did not allow for full efficacy evaluations of KIT exon 14 mutations, KIT exon 18 mutations, KIT/PDGFRA WT, or PDGFRA mutations (particularly the exon 18 D842V substitution mutation). However, the rationale for this study design was to provide patients with ≥fourth-line advanced GIST effective treatment, since the median PFS for patients with untreated GIST after failing several TKIs is approximately 1 month (42,43). While the grouping for the efficacy analysis (KIT exons 9, 11, 13, and 17) was driven by sample size, these are common primary and secondary mutations in GIST and efficacy against these mutations support ripretinib’s broad mechanism of action (24,26). Longitudinal liquid biopsy analysis is ongoing and will add valuable information to the complexity of mutational status while patients are on treatment. In addition, previous studies have also identified KIT- and PDGFRA-independent mechanisms of resistance, such as mutations in PI3K, TSC1, MAPK, RAF, and RAS (7,44). These may represent
escape mechanisms that could also potentiate mechanisms of resistance to ripretinib, regardless
of effective *KIT/PDGFRα* inhibition.

In conclusion, patients from the INVICTUS study exhibited complex and heterogenous
mutational backgrounds as determined by both tissue and liquid biopsy. Despite some
limitations with liquid biopsy results, this screening technique provides a novel and noninvasive
investigational tool with potential high clinical utility to determine patients’ genotype. This
analysis demonstrates that ripretinib provided clinically meaningful benefit across mutation
subgroups when compared with placebo. These results support the use of ripretinib as a fourth-
line therapy in patients with advanced GIST harboring a broad spectrum of mutations.
Acknowledgments

Medical writing and editorial support were provided by Lauren Hanlon, PhD, of AlphaBioCom, LLC, King of Prussia, PA, USA. This support was funded by Deciphera Pharmaceuticals, LLC, Waltham, MA, USA.

Author Contributions

a. Conceptualization: SB, MCH, PS, JM, RRS, YS
b. Resources: SB, MCH, SG, JRZ, CS, HG, RLJ, SA, GA, PC, PR, JYB, PS, MVM
c. Data curation:
d. Software:
e. Formal analysis: YS
f. Supervision: SB, MCH, SG, JRZ, CS, HG, RLJ, SA, GA, PC, PR, JM, YS, RRS, JYB, PS, MvM
g. Funding acquisition:
h. Validation:
i. Investigation: SB, MCH, SG, JRZ, CS, HG, RLJ, SA, GA, PC, PR, JYB, PS, MvM
j. Visualization: JM, YS, RRS
k. Methodology:
l. Writing-original draft: SB, MCH, PS, JM, YS, RRS
m. Project administration: JM, YS, RRS
n. Writing-review and editing: all authors
References

Table 1. Primary mutation subgroups detected in baseline tissue, liquid, and combined biopsies

<table>
<thead>
<tr>
<th></th>
<th>Ripretinib (n = 85)</th>
<th>Placebo (n = 44)</th>
<th>Total (N = 129)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline tissue biopsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detected mutation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT exon 11</td>
<td>47 (55.3)</td>
<td>28 (63.6)</td>
<td>75 (58.1)</td>
</tr>
<tr>
<td>KIT exon 9</td>
<td>14 (16.5)</td>
<td>6 (13.6)</td>
<td>20 (15.5)</td>
</tr>
<tr>
<td>Not available/not done<sup>a</sup></td>
<td>12 (14.1)</td>
<td>5 (11.4)</td>
<td>17 (13.2)</td>
</tr>
<tr>
<td>Other</td>
<td>12 (14.1)</td>
<td>5 (11.4)</td>
<td>17 (13.2)</td>
</tr>
<tr>
<td>KIT/PDGFRA WT</td>
<td>7 (8.24)</td>
<td>3 (6.81)</td>
<td>10 (7.75)</td>
</tr>
<tr>
<td>PDGFRA<sup>b</sup></td>
<td>3 (3.53)</td>
<td>0</td>
<td>3 (2.34)</td>
</tr>
<tr>
<td>KIT other exon<sup>c</sup></td>
<td>2 (2.35)</td>
<td>2 (4.55)</td>
<td>4 (3.10)</td>
</tr>
<tr>
<td>Baseline liquid biopsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detected mutation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT exon 11<sup>d</sup></td>
<td>38 (44.7)</td>
<td>28 (63.6)</td>
<td>66 (51.2)</td>
</tr>
<tr>
<td>KIT exon 9<sup>d</sup></td>
<td>12 (14.1)</td>
<td>7 (15.9)</td>
<td>19 (14.7)</td>
</tr>
<tr>
<td>Not available/not done<sup>a</sup></td>
<td>6 (7.06)</td>
<td>2 (4.55)</td>
<td>8 (6.20)</td>
</tr>
<tr>
<td>Other</td>
<td>29 (34.1)</td>
<td>8 (18.2)</td>
<td>37 (28.7)</td>
</tr>
<tr>
<td>KIT/PDGFRA-liquid biopsy-negative</td>
<td>22 (25.9)</td>
<td>6 (13.6)</td>
<td>28 (21.7)</td>
</tr>
<tr>
<td>PDGFRA<sup>b</sup></td>
<td>3 (3.53)</td>
<td>0</td>
<td>3 (2.33)</td>
</tr>
<tr>
<td>KIT other exon<sup>c</sup></td>
<td>4 (4.71)</td>
<td>2 (4.55)</td>
<td>6 (4.65)</td>
</tr>
<tr>
<td>Baseline combined biopsies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detected mutation, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT exon 11<sup>d</sup></td>
<td>52 (61.2)</td>
<td>34 (77.3)</td>
<td>86 (66.7)</td>
</tr>
<tr>
<td>KIT exon 9<sup>d</sup></td>
<td>16 (18.8)</td>
<td>7 (15.9)</td>
<td>23 (17.8)</td>
</tr>
<tr>
<td>Not available/not done<sup>a</sup></td>
<td>5 (5.88)</td>
<td>0</td>
<td>5 (3.88)</td>
</tr>
<tr>
<td>Other</td>
<td>12 (14.1)</td>
<td>4 (9.09)</td>
<td>16 (12.4)</td>
</tr>
<tr>
<td>KIT/PDGFRA-liquid biopsy-negative</td>
<td>6 (7.06)</td>
<td>3 (6.82)</td>
<td>9 (6.98)</td>
</tr>
<tr>
<td>PDGFRA<sup>b</sup></td>
<td>3 (3.53)</td>
<td>0</td>
<td>3 (2.33)</td>
</tr>
<tr>
<td>KIT other exon<sup>c</sup></td>
<td>3 (3.53)</td>
<td>1 (2.27)</td>
<td>4 (3.10)</td>
</tr>
</tbody>
</table>

^aIncludes patients who failed sequencing due to low tumor content and patients with no specimen.

^bAll patients with PDGFRA mutations had exon 18 non-D842V mutations.

^cKit other exon includes any mutation in a Kit exon that is not 9 or 11.

^dKit exon 9+11 mutation was detected via liquid biopsy in 1 patient receiving placebo and was counted in both groups.

WT, wild-type.
Figure legends

Figure 1. Flow chart of patient biopsies and mutational status.

On average, 1.85 KIT/PDGFRA mutations were detected in each tissue biopsy, while 2.61 KIT/PDGFRA mutations were detected in each liquid biopsy.

PDGFRA, platelet-derived growth factor alpha; WT, wild-type.

Figure 2. KIT mutations detected outside of exons 9/11

Each circle represents one patient and the letter within each circle represents the amino acid mutation location. Lettered circle indicates the protein change that occurred; Non-lettered circle indicates an in-frame deletion. There were 3 patients with exon 13 only mutations, 1 patient with an exon 17 only mutation, 1 patient with exon 13 and exon 17 mutations, and 1 patient with exon 13, exon 14, and exon 17 mutations mutation detected in liquid biopsies.

Figure 3. KM curves of PFS by any exon 9, 11, 13, or 17

Patients may be included in multiple subgroups if they had multiple mutations. Due to low numbers, patients with any KIT exon 14 (n = 6), any KIT exon 18 (n = 6), or PDGFRA (n = 3) mutations were not analyzed.

KM, Kaplan-Meier; PFS, progression-free survival.

Figure 4. Forest plot of hazard ratios of progression-free survival by any KIT exon 9, 11, 13, or 17

Patients may be included in multiple subgroups if they had multiple mutations. Due to low numbers, patients with any KIT exon 14 (n = 6), any KIT exon 18 (n = 6), or PDGFRA (n = 3) mutations were excluded from this analysis.

One patient had both KIT exon 11 and KIT exon 9 mutations detected in liquid biopsy.

CI, confidence interval; QD, once daily.

Figure 5. Forest plot of hazard ratios of progression-free survival within any KIT exons 9 or 11

One patient had both a KIT exon 11 mutation and a KIT exon 9 mutation detected in liquid biopsy.

Includes exon 11 only mutations (n = 13) and exon 11 + 18 mutations (n = 1).

CI, confidence interval; QD, once daily.
129 patients

Baseline tissue biopsy (n = 128)

- Sequencing failed (n = 16)
- KIT/PDGFRα WT (n = 10)
- KIT/PDGFRα mutation (n = 102)

Baseline liquid biopsy (n = 122)

- Sequencing failed (n = 1)
- KIT/PDGFRα-liquid biopsy-negative (n = 28)
- KIT/PDGFRα mutation (n = 93)

Combined tissue and liquid biopsy

- KIT/PDGFRα mutation (n = 115)
<table>
<thead>
<tr>
<th>Mutation subgroup</th>
<th>Ripretinib 150 mg QD (N)</th>
<th>Placebo (N)</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>85</td>
<td>44</td>
<td>0.16 (0.10, 0.27)</td>
</tr>
<tr>
<td>Any KIT exon 11<sup>a</sup></td>
<td>52</td>
<td>34</td>
<td>0.13 (0.06, 0.24)</td>
</tr>
<tr>
<td>Any KIT exon 9<sup>a</sup></td>
<td>16</td>
<td>7</td>
<td>0.16 (0.05, 0.51)</td>
</tr>
<tr>
<td>Any KIT exon 13</td>
<td>27</td>
<td>16</td>
<td>0.14 (0.06, 0.34)</td>
</tr>
<tr>
<td>Any KIT exon 17</td>
<td>44</td>
<td>27</td>
<td>0.14 (0.07, 0.29)</td>
</tr>
</tbody>
</table>

Figure 4
<table>
<thead>
<tr>
<th>Mutation subgroup</th>
<th>Ripretinib 150 mg QD (N)</th>
<th>Placebo (N)</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>85</td>
<td>44</td>
<td>0.16 (0.10, 0.27)</td>
</tr>
<tr>
<td>Any KIT exon 11<sup>a</sup></td>
<td>52</td>
<td>34</td>
<td>0.13 (0.06, 0.24)</td>
</tr>
<tr>
<td>Exon 11 + 13 only</td>
<td>8</td>
<td>5</td>
<td>0.04 (0.00, 0.49)</td>
</tr>
<tr>
<td>Exon 11 + 17</td>
<td>20</td>
<td>14</td>
<td>0.06 (0.01, 0.28)</td>
</tr>
<tr>
<td>Exon 11 + 13 + 17</td>
<td>16</td>
<td>9</td>
<td>0.18 (0.06, 0.55)</td>
</tr>
<tr>
<td>Other<sup>b</sup></td>
<td>8</td>
<td>6</td>
<td>0.18 (0.02, 1.63)</td>
</tr>
<tr>
<td>Any KIT exon 9<sup>a</sup></td>
<td>16</td>
<td>7</td>
<td>0.16 (0.05, 0.51)</td>
</tr>
<tr>
<td>Exon 9 + 17</td>
<td>7</td>
<td>4</td>
<td>0.14 (0.02, 0.86)</td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>3</td>
<td>0.05 (0.00, 0.70)</td>
</tr>
</tbody>
</table>

^a Data from patients with available KIT mutational status.

^b Data from patients with available KIT mutational status.
Clinical Cancer Research

Clinical activity of ripretinib in patients with advanced gastrointestinal stromal tumor harboring heterogenous KIT/PDGFRA mutations in the phase 3 INVICTUS study

Sebastian Bauer, Michael C. Heinrich, Suzanne George, et al.

Clin Cancer Res Published OnlineFirst September 9, 2021.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-21-1864

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2021/09/09/1078-0432.CCR-21-1864.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2021/09/08/1078-0432.CCR-21-1864. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.