Adding Base Excision Repair Inhibitor TRC102 to standard Pemetrexed-Platinum-Radiation in Patients with Advanced Non-Squamous Non-Small Cell Lung Cancer: Results of a phase I trial

Tithi Biswas1,2,*, Afshin Dowlati1,2, Charles A. Kunos3, John J. Pink2,4, Nancy L. Oleinick2, Shakun Malik3, Pingfu Fu2,5, Shufen Cao2,5, Debora S. Bruno1,2, David L. Bajor1,2, Monaliben Patel1,2, Stanton L. Gerson4,6, Mitchell Machtay7.

1University Hospitals Seidman Cancer Center
2Case Western Reserve University, Cleveland, OH
3National Cancer Institute, Rockville, MD
4Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
5Department of Population and Quantitative Health Sciences, Case Western Reserve University
6School of Medicine, Case Western Reserve University, Cleveland, OH
7Pennsylvania State University, State College, PA

Correspondence:

Address:

Department of Radiation Oncology, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106

Email: tithi.biswas@uhhospitals.org; Tel.: +1-216-704-3088

Key words: Adenocarcinoma, chemo-radiation, stage III NSCLC, Base excision repair inhibition, TRC102

Running Title: TRC102 with pemetrexed/cisplatin-radiation in stage III NSCLC

Research Funding:

This research was supported by the Lucille and Robert Gries Endowed Fund, the Vincent K. Smith Fund, and Early Phase Clinical Research Support P30 Funding at the Case Comprehensive Cancer Center.

Conflict of Interest:

Stanton L. Gerson: Dr Gerson is a member of the scientific advisory board for Tracon Pharmaceuticals, has equity in Tracon, is an inventor of the use of TRC102 to block base excision repair and the recipient of remuneration for his role on the scientific advisory board and for milestone payments outlined in the licensing agreement from CWRU to Tracon. Dr Gerson has been allowed to remain part of these studies due to his scientific background but this is limited to an advisory role in study design, review of laboratory correlates in preclinical models.
that are instructive for clinical evaluations, but has had no role during the clinical decision making of treatment or assessments of clinical responses.

All other authors declare no conflict of interest.
Adding the Base Excision Repair Inhibitor TRC102 to Standard Pemetrexed-Platinum-Radiation in Advanced Non-squamous Non-Small Cell Lung Cancer: Results of a Phase I Trial

Authors: Tithi Biswas¹,², Afshin Dowlati¹,²,⁴, Charles Kunos³, John Pink²,⁴, Nancy L. Oleinick², Shakun M. Malik³, Pingfu Fu²,⁵, Shufen Cao²,⁵, Debora S. Bruno¹,², David Lawrence Bajor¹,², Monaliben Patel¹,², Stanton L. Gerson⁴,⁶, Mitchell Machtay⁷.

¹University Hospitals Seidman Cancer Center, Cleveland, OH; ²Case Western Reserve University, Cleveland, OH; ³National Cancer Institute, Rockville, MD; ⁴Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH; ⁵Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH; ⁶School of Medicine, Case Western Reserve University, Cleveland, OH; ⁷Pennsylvania State University, State College, Hershey, PA.

Statement of Translation Relevance:

The study drug TRC102 (Methoxyamine) is a small molecule inhibitor of base-excision repair (BER), is highly water soluble and can be administered parenterally or orally. TRC102 potentiates the cytotoxicity of alkylator and antimetabolite chemotherapy and reverses chemotherapy resistance by rapidly and covalently binding to chemotherapy-induced apurinic/apyrimidinic (AP, abasic) sites in DNA. We previously published pre-clinical data showing significantly better radiosensitization by pemetrexed when combined with methoxyamine (TRC102) prior to radiotherapy in both in vitro and in vivo studies. Based on our pre-clinical results, we conducted a Phase I dose escalation trial to determine safety, tolerability and maximum tolerated dose of TRC102 in combination with pemetrexed-cisplatin and standard thoracic radiotherapy in advanced non-squamous NSCLC. This is the result of the phase I trial.
Abstract:
Background: TRC102, a small molecule base excision repair inhibitor, potentiates the cytotoxicity of pemetrexed and reverses resistance by binding to chemotherapy-induced abasic sites in DNA. We conducted a Phase I clinical trial combining pemetrexed and TRC102 with cisplatin-radiation in stage III NS-NSCLC.

Methods: Fifteen patients were enrolled from 2015 to 2019. The primary objective was to determine the DLT and MTD of TRC102 in combination with pemetrexed, cisplatin and radiotherapy. Secondary objectives were to assess toxicity, tumor response and PFS at 6 months. Based on our pre-clinical experiments, pemetrexed-TRC102 was given on day 1, and cisplatin/radiotherapy was initiated on day 3. This schedule was duplicated in the second cycle. After completion, 2 additional cycles of pemetrexed-cisplatin were given. Toxicities were assessed using NCI CTCAAE versions 4/5.

Results: The median age was 69 years (45-79) with the median follow up of 25.7 months (range: 7.9, 47.4). No DLTs and no grade 5 toxicity were seen. Hematologic and GI toxicities were the most common side effects. No clinical radiation pneumonitis was seen. Of 15 evaluable patients, 3 had CR (20%) and 12 had PR (80%). The 6-month PFS was 80% and 2-year OS was 83%.

Conclusion: Pemetrexed-TRC102 combined with cisplatin/radiotherapy in NS-NSCLC is safe and well tolerated. The recommended phase II dose is chosen to be 200 mg TRC102 along with cisplatin–pemetrexed. No additional safety signal was seen beyond the expected CRT risks. A Phase II trial, integrating post-CRT immunotherapy with this aggressive DNA-damaging regimen is warranted.
Abbreviations:

Non squamous non-small-cell lung cancer: NS-NSCLC

dose-limiting toxicity (DLT)

maximum tolerated dose (MTD)

Common Terminology Criteria for Adverse Events: CTCAE

progression-free survival (PFS)

complete response (CR)

partial response (PR)

overall survival (OS)

National Cancer Institute: (NCI)

Response Evaluation Criteria in Solid Tumors (RECIST)

Cancer Therapy Evaluation Program (CTEP)

apurinic/apyrimidinic (AP, abasic)

Key words: Adenocarcinoma, chemo-radiation, stage III NSCLC, Base excision repair inhibition
Introduction:

Lung cancer remains the leading cause of death in the United States and globally is the most common cancer both in incidence and mortality (1.35 million deaths annually) [1]. Non-small cell lung cancer (NSCLC) accounts for more than 80% of all lung cancers [1, 2]. About 35% of lung cancer patients present with locally advanced (inoperable or at best borderline operable) but non-metastatic disease [1, 2]. Prior to the PACIFIC trial, the 5-year overall survival remained poor at approximately 15% with median survival rates ranging from 17-28 months with standard concurrent chemo-radiation using a platinum-based doublet regimen, [1-5].

In 2017, results of the PACIFIC trial of adding consolidative durvalumab after concurrent chemo-radiation established the new standard of care in stage III unresectable NSCLC [6, 7]. The recent 5-year result showed persistent benefit with 42.9% in favor of durvalumab versus 33.4% with placebo surviving at 60 month. About 33.1% patients remained alive and progression free compared to 19% with placebo [8]. Since, durvalumab was the study drug, a platinum based doublet was allowed with a variety of 2nd agent including etoposide, vinblastine, vinorelbine, taxane (paclitaxel or docetaxol) and pemetrexed for the concurrent chemo-radiation portion of the trial.

Pemetrexed is a third-generation anti-folate chemotherapy agent that inhibits thymidylate synthase (TS) and several other enzymes in the nucleotide synthesis pathway [9]. In addition to its efficacy with cisplatin in producing first-line responses and improved freedom from progression and survival in metastatic NSCLC, pemetrexed has also been found to be effective as a maintenance therapy [10, 11, 12, 13]. This has been achieved without negatively affecting quality of life in patients with metastatic NS-NSCLC [14]. In addition, pemetrexed has been shown to be safe in elderly patients with good performance status [15]. While several Phase I
and II studies have shown encouraging results from combinations of pemetrexed and a platinum agent with concurrent thoracic radiotherapy in locally advanced NSCLC [16, 17,18,19] and similar efficacy compared to more standard chemotherapy regimens, the phase III PROCLAIM trial failed to show improved survival with pemetrexed/cisplatin over the standard cisplatin/etoposide regimen. However, there was significantly lower incidence of both hematologic and some non-hematologic toxicities when cisplatin was combined with pemetrexed rather than etoposide [20-21]. The cisplatin/pemetrexed combination was better tolerated with fewer adverse effects and can be tested with newer strategies to enhance its efficacy given its low rate of adverse events [20, 21].

Methoxyamine (TRC102) is a small molecule inhibitor of base-excision repair (BER) and is highly water soluble. It can be administered parenterally or orally (i.e., it is bioavailable after oral administration). Methoxyamine potentiates the cytotoxicity of alkylator and antimetabolite chemotherapy and reverses chemotherapy resistance by rapidly and covalently binding to chemotherapy-induced apurinic/apyrimidinic (AP, abasic) sites in DNA [22, 23, 24, 25, 26]. The first Phase I study in advanced solid tumors combining methoxyamine and pemetrexed (performed with the participation of our institution) showed safety of this combination with encouraging response rates in a small number of patients with NSCLC [27-28].

We previously published pre-clinical data showing significantly better radiosensitization by pemetrexed when combined with methoxyamine prior to radiotherapy in both in vitro and in vivo studies [29]. Based on our experience, we conducted a Phase I dose escalation trial to determine safety, tolerability and maximum tolerated dose of TRC102 in combination with pemetrexed-cisplatin and standard thoracic radiotherapy in advanced non-squamous NSCLC. An important objective was to assess any indication of efficacy of this regimen in the treatment of advanced NSCLC.
Methods:

We performed a Cancer Therapy Evaluation Program (CTEP)-approved Phase I single institution open label dose escalation study, adding TRC102 to standard of care cisplatin-pemetrexed and thoracic radiotherapy in patients with stage III and oligometastatic stage IVA NS-NSCLC. The primary objective was safety and feasibility and to determine the maximum tolerated dose and recommended Phase II dose of TRC102. The secondary objectives were to assess the toxicity profile, tumor response and progression free survival at 6 months.

Patients of age ≥ 18 years with histologically confirmed adenocarcinoma of the lung with stage III or oligometastatic stage IV disease were eligible.

TRC102 was administered orally with pemetrexed on Day 1 of cycle 1 and again on day 1 of cycle 2 at 3 weeks. Based on our pre-clinical data which suggested a strong effect of sequencing of the study drug with radiation, cisplatin and radiation were administered on day 3 (supplemental Fig 1). For cycle 2, the same sequence was repeated. For the 2nd cycle, since radiation was held until after chemotherapy on Wednesday (supplemental Fig 1), one additional fraction of radiation was delivered on Saturday. Following completion of chemo-radiation, 2 additional cycles of adjuvant chemotherapy with cisplatin-pemetrexed were administered. The total radiation dose was selected to be 60 Gy, administered in 30 fractions. For dose escalation, a classic 3+3 design was used, and the TRC102 doses tested were 50 mg, 100 mg, 150 mg and 200 mg. Dose escalation was capped at 200 mg primarily because prior Phase I data of TRC102 in combination with pemetrexed reported an estimated MTD to be 60 mg/m².

Study Assessments:
The primary end point of the study was to determine the MTD of TRC102 in combination with pemetrexed-cisplatinum and thoracic radiotherapy and to assess the dose-limiting toxicity. The secondary objectives were to assess the toxicity profile of this regimen and progression free survival at 6 months.

Adverse events (AEs) were assessed at every visit and reported per the Common Terminology Criteria for Adverse Events (versions 4 and 5). Clinical activity of the experimental treatment was evaluated with serial computed tomography scans (CT scans) to assess the response to treatment based on Response Evaluation Criteria in Solid Tumors (RECIST) (version 1.1). Both baseline and post-treatment CT were performed. Subsequently, serial CT scans were performed every 3 months. A baseline positron emission tomography–computed tomography (PET-CT) scan and immediate post treatment PET-CT scan were also obtained. Responses were classified as complete response (CR), partial response (PR), stable disease (SD) or progressive disease (PD). We also evaluated overall survival (OS), progression free survival (PFS), loco regional relapse-free survival (LRRFS) and distant relapse-free survival (DRFS).

Statistical methods:

The response rate (CR+PR) along with its 95% confidence interval (CI) was estimated by Wilson’s method [30]. The OS was measured from the onset of treatment to the date of death and censored at the date of last follow-up for survivors. The PFS was measured from the onset of treatment to the date of disease progression, as defined in RECIST 1.1, or the date of death and censored at the date of last follow-up for those still alive without disease progression. LRRFS was measured from the onset of treatment to the date of locoregional relapse and was censored at the date of last follow-up for patients without locoregional relapse. DRFS was measured from the onset of treatment to the date of distant relapse and was censored at the
date of last follow-up for patients without distant relapse. Survivor distribution was estimated using Kaplan-Meier method[31].

Results:

The study was opened in 11/2015 with CTEP approval, and accrual was completed in 8/2019.

Patient Characteristics:

A total of 15 patients were enrolled in the study and are included in the analysis. Table 1 describes the patient and treatment details. The median follow-up was 25.7 months (range: 7.9-47.4). The median age was 69 years (range: 45-79). There were 12 female patients and 3 male patients. Twelve patients had stage III and 3 patients had stage IVA oligometastatic disease. Of 3 stage IVA patients, two had solitary brain metastasis at time of diagnosis and the 3rd patient had biopsy proven solitary non-regional lymph node metastasis. One patient with brain metastasis had resection followed by stereotactic radiation to the resection cavity. This patient developed leptomeningeal recurrence and died. The 2nd patient had solitary brain metastasis and underwent stereotactic radiosurgery alone and at the time of her last follow up was alive without recurrence. The 3rd patient developed both local and distant recurrence and was alive with disease on his last follow up.

Dose Escalation and Toxicity: The pre-determined dose escalation schedule of TRC102 was completed through doses of 50 mg, 100 mg, 150 mg and 200 mg orally with two cycles of chemotherapy during concurrent chemo-radiotherapy. Up to and including the maximum tested
dose we observed no dose limiting toxicity. The MTD of TRC 102 was determined to be 200 mg in combination with combined platinum-based chemo-radiation.

TRC102 in combination with pemetrexed-cisplatin and thoracic radiotherapy was well tolerated. The most common all grade toxicities were hematologic (Table 2). Two patients in dose level 4 developed grade 3 anemia requiring blood transfusions. One patient in dose level 4 developed grade 4 neutropenia requiring a delay in her third cycle of chemotherapy.

Among GI toxicities, nausea and vomiting were the most common. Seven patients developed grade 2 esophagitis not needing treatment interruption. The dose to the esophagus is shown in Table 2. Of these 7 patients with grade 2 esophagitis, 2 patients were at dose level I, 3 patients at dose level IV and one each in dose level II and III.

The median V20 and mean lung dose are shown in Table 1. Importantly, no clinical radiation pneumonitis was observed in any patient.

Response and survival:

All 15 patients were evaluable for clinical response; 3 (20%) had complete response, 12 (80%) had partial response (Figure 1) as per each dose level of TRC102. The clinical response (CR+PR) rate was 100% with 95% CI (0.8, 1).

The 6-month PFS was 80% (Figure 2) with 2-year OS (Fig. 3) of 83%. Additionally, Figures 4a-4b show locoregional relapse-free and distant relapse-free survival. A total of 5 patients developed distant relapse, 3 patients developed local-regional relapse. Two patients have died, one from both regional recurrence and malignant pleural effusion, and the other from leptomeningeal recurrence. She had a solitary brain metastasis at diagnosis and was enrolled in the trial in the oligometastatic disease cohort as stated above. Seven patients are without any evidence of either local or distant disease relapse at the time of their last follow up.
Discussion:

This is the first clinical trial incorporating a BER inhibitor with pemetrexed in combination with cisplatin and thoracic radiation in advanced non-squamous NSCLC. The rationale for this trial was based on robust preclinical studies both in vitro and in vivo showing enhanced radiosensitization by pemetrexed when combined with TRC102 [26]. In addition, the present study also established the safety of the BER inhibitor TRC102 in combination with standard-of-care pemetrexed-platinum doublet and thoracic radiotherapy for locally advanced NSCLC when the trial was initiated.

Pemetrexed is an antimetabolite that blocks several key folate-dependent enzymes in the purine and pyrimidine pathways of DNA synthesis, resulting in misincorporation of uracil in DNA. Incorporated uracil bases are recognized and excised by uracil DNA glycosylase, thereby protecting cells from mutagenesis and eventual cytotoxicity. The removal of the defective base results in the creation of an abasic site (AP site) which is a critical step in the BER pathway. BER is the most effective way of repairing a variety of single base lesions, including those induced by chemotherapeutic agents, such as pemetrexed, thereby rendering tumor cells resistant to these drugs. TRC102 can overcome the BER-induced drug resistance by reacting chemically with the aldehyde group in the sugar moiety of the AP site, forming a TRC102-bound AP site. This modified AP site is resistant to repair by AP endonuclease 1 [22, 24, 25]. In the trial, TRC102 and pemetrexed were given in a sequential fashion based on our preclinical data showing optimal radiosensitization by pemetrexed when methoxyamine was given prior to radiation.
Adenocarcinoma is now the most commonly diagnosed subtype of NSCLC. The pemetrexed-cisplatin combination is an attractive regimen with thoracic radiation, given its better tolerance allowing for the delivery of a full systemic dose of thoracic radiation for stage III NSCLC with lower toxicity rate especially with the new standard of adding consolidative durvalumab. Our pre-clinical studies [29] demonstrated significant improvement in efficacy of pemetrexed when TRC102 was added, which in turn increased the radiosensitization activity of pemetrexed. This increased efficacy of pemetrexed is consistent with our scientific rationale that was validated in pre-clinical studies.

In the present Phase I trial, the combination of pemetrexed-cisplatin and thoracic radiation with the study drug TRC102 in advanced adenocarcinoma was well tolerated with no DLT seen. The recommended Phase II dose was established as 200 mg flat dose in combination with a standard dose of pemetrexed (500 mg/m²) and cisplatin (75 mg/m²) during thoracic radiotherapy. The most common AEs seen were hematologic with decreased neutrophil and lymphocyte counts. Two patients developed grade 3 anemia requiring blood transfusion.

The most notable observation was the absence of pneumonitis of any grade. This is important, as the current standard of care in stage III NSCLC, based on the PACIFIC trial, is addition of one year of consolidative durvalumab [6, 7, 8]. Both thoracic radiotherapy and the PDL1 inhibitor durvalumab have the potential to cause pneumonitis. The reported incidence of any grade radiation pneumonitis after chemoradiation therapy is in the range of 5-15% [32], although it approached 30% in a meta-analysis of patient reported data [33].

In the PACIFIC trial, the overall rate of pneumonitis was 33.9%, although the incidence of grade 3-4 pneumonitis was comparable in the two arms, 3.4% with durvalumab versus 2.6% with placebo. In addition, the PACIFIC trial reported any grade radiation pneumonitis of 20.2%, with grade 3-4 incidence of 1.9% in the treatment arm compared to 15.8% any grade and 0.4%
grade 3-4 radiation pneumonitis with placebo. However, recent data show that in real world practice, grade 3 or higher pneumonitis is somewhat more frequent than this, at 6.5%, with 1.5% of patients experiencing fatal pneumonitis [34]. Other reports also showed increased rates of grade 3 pneumonitis with the addition of durvalumab, 14.3% compared to 3.4% that was reported in the PACIFIC trial. [35]. As the use of consolidative durvalumab is now being integrated routinely in the treatment of stage III NSCLC, there is a potential for increased occurrence of radiation pneumonitis in real world settings. Although the current study while showed no incidence of radiation pneumonitis, we acknowledge that only 15 patients were involved. Nonetheless, the low incidence of pneumonitis makes it a promising combination therapy to be followed by consolidative durvalumab in future trial.

When the trial was initiated, results of the PACIFIC trial was not available and since then, consolidative durvalumab has become the standard of care following completion of chemo-radiation. Even though the primary endpoint of this phase I trial was to determine the MTD of TRC102 in combination with chemo-radiation, we did see indication of efficacy of this regimen without any increase in toxicity as shown in Fig. 1. It is to be noted that patients in the PACIFIC trial were randomized only if they did not have disease progression after chemo-radiation. It will be important to improve further the response rate of the concurrent part of the treatment prior to starting durvalumab using novel approaches. Even though the PACIFIC trial has improved both OS and PFS, at 5 years only a third of patients remained both alive and disease free. The 6-month PFS rate was 80%. The most common type of tumor recurrence was distant, which is known to occur in 1/3 of patients after chemo-radiation [1]. Taken in context with results of the PACIFIC trial, showing response rates of 2.2% CR, 48.9% PR and 47.4% SD after standard chemo-radiation, our trial demonstrated an overall response rate of 100%, highlighting the promising activity of this combination in stage III non-squamous NSCLC. The recent report of KEYNOTE 799, a Phase II trial in stage III NSCLC that utilized upfront pembrolizumab in
addition to chemo-radiation, showed a 67% overall response rate in the carboplatin-paclitaxel-radiation group and a 56.6% overall response rate in the cisplatin-pemetrexed-radiation group [36]. Addition of upfront pembrolizumab did not translate into improved response rates compared to standard chemo-radiation. The 6-month PFS with upfront pembrolizumab was reported as 81%, similar to our result without the addition of an up-front immune check point inhibitor. In addition, with upfront pembrolizumab, 8% grade 3 pneumonitis occurred in the carboplatin-paclitaxel group and 5.5% grade 3 pneumonitis occurred in the cisplatin-pemetrexed groups. In the carboplatin-paclitaxel cohort, with 6 months OS of 87%, 4 patients had grade 5 pneumonitis, which needs to be taken into consideration when choosing another agent that has the potential to increase the pneumonitis rate observed with concurrent chemo-radiation.

In the current study, incorporation of TRC102 as the 3rd agent with chemo-radiation has shown encouraging efficacy and requires future trials to test this regimen along with consolidative durvalumab. Although the result of this Phase I trial is promising, especially in non-squamous NSCLC, this trial focused primarily on tolerability in a limited number of patients. The trial also included patients with both stage III and oligometastatic stage IV disease and, therefore, may include bias in interpreting the overall survival result.

In conclusion, TRC102 in combination with cisplatin-pemetrexed and 60 Gy of thoracic radiation was well tolerated with no DLT and produced promising disease response and 6 months PFS in patients with non-squamous NSCLC. Importantly, TRC102 was well tolerated in combination with standard chemo-radiation. This combination has the potential to improve both progression free and overall survival when administered with consolidative durvalumab. A future Phase II trial is under consideration with consolidative durvalumab.

Research Funding:
This research was supported by the Lucille and Robert Gries Endowed Fund, the Vincent K. Smith Fund, and Early Phase Clinical Research Support P30 Funding at the Case Comprehensive Cancer Center.

References:

3 Trial of Pemetrexed, Cisplatin, and Radiotherapy Followed by Consolidation
Pemetrexed Versus Etoposide, Cisplatin, and Radiotherapy. World Lung
Congress 2013, Sydney, Australia.

uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the
limit with methoxyamine to inhibit base excision repair. Cell Death Dis. 2012; 3:
e252.

Methoxyamine potentiates DNA single strand breaks and double strand breaks
induced by temozolomide in colon cancer cells. Mutat Res. 2001; 484 (4): 269-
281.

25. Liu L., Gerson S. L. Therapeutic impact of methoxyamine: blocking repair of
abasic sites in the base excision repair pathway. Curr Opin Investig Drugs.

Combined treatment with temozolomide and methoxyamine: blocking
apurininc/pyrimidinic site repair coupled with targeting topoisomerase IIalpha.

al. Final result from a Phase I study of oral TRC102(Methoxyamine HCl), an

Table 1: Patient and treatment characteristics of 15 patients

<table>
<thead>
<tr>
<th>Factor</th>
<th>median (range) or frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>69 (45 - 79)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>12 (80)</td>
</tr>
<tr>
<td>Male</td>
<td>3 (20)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>4 (26.7)</td>
</tr>
<tr>
<td>White</td>
<td>10 (66.7)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 (6.6)</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
</tr>
<tr>
<td>III/IIIA/IIIB</td>
<td>12 (80)</td>
</tr>
<tr>
<td>IVB</td>
<td>3 (20)</td>
</tr>
<tr>
<td>T stage</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1 (6.6)</td>
</tr>
<tr>
<td>1</td>
<td>4 (26.7)</td>
</tr>
<tr>
<td>2</td>
<td>4 (26.7)</td>
</tr>
<tr>
<td>3</td>
<td>6 (40)</td>
</tr>
<tr>
<td>N stage</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1 (6.6)</td>
</tr>
<tr>
<td>1</td>
<td>1 (6.6)</td>
</tr>
<tr>
<td>2</td>
<td>8 (53.4)</td>
</tr>
<tr>
<td>3</td>
<td>5 (33.4)</td>
</tr>
<tr>
<td>M stage</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12 (80)</td>
</tr>
<tr>
<td>1</td>
<td>3 (20)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>Yes</td>
<td>13 (86.7)</td>
</tr>
<tr>
<td>PTV *</td>
<td>439.5 (197.9 - 1088.9)</td>
</tr>
<tr>
<td>Lung V20!</td>
<td>30.5% (14.3 - 34.2)</td>
</tr>
<tr>
<td>Mean Lung dose</td>
<td>17 Gy (10 – 20.3 Gy)</td>
</tr>
<tr>
<td>Lung V5!</td>
<td>55% (38.7 – 65)</td>
</tr>
<tr>
<td>Esophagus mean dose</td>
<td>25.5 Gy (16.5 – 34)</td>
</tr>
<tr>
<td>Heart mean dose</td>
<td>13.6 Gy (3.5 – 27.9)</td>
</tr>
</tbody>
</table>

*Planning target volume, † Volume of lung getting 20 Gy and 5 Gy of radiation, respectively
Table 2: The most common toxicities and grade

<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Total (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematological toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Decreased neutrophil count</td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Decreased Platelet count</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Decreased WBC</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>GI toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Dehydration</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Esophagitis</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Anorexia</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Weight Loss</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pulmonary Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Cough</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Skin toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermatitis</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Figure Legends:

Figure 1: Waterfall plot - Best response for target lesions by patient, based on maximal percentage of tumor reduction.

Figure 2: Kaplan-Meier estimation of progression-free survival with 95% confidence interval. The probability of PFS at 6, 12, 24 and 36 months were 80%, 60%, 51.4% and 51.4%, respectively.

Figure 3: Kaplan-Meier estimation of overall survival with 95% confidence interval. The probability of OS at 6, 12, 24 and 36 months were 100%, 93.3%, 83% and 83%, respectively.

Figure 4A: Kaplan-Meier estimation of locoregional relapse-free survival with 95% confidence interval. The probabilities of locoregional relapse-free survival at 6, 12, 24 and 36 months were 93.3%, 93.3%, 75.4% and 75.4%, respectively.

Figure 4B: Kaplan-Meier estimation of distant relapse-free survival with 95% confidence interval. The probabilities of distant relapse-free survival at 6, 12, 24 and 36 months were 86.7%, 66.7%, 58.3% and 58.3%, respectively.
Figure 1: Change of tumor burden from baseline (%)

- TRC: 50mg
- TRC: 100mg
- TRC: 150mg
- TRC: 200mg

% Change from baseline: -100 to 0
Figure 2

Months after onset of treatment

Probability of progression-free survival (%)

n = 15
Months after onset of treatment

Probability of locoregional relapse-free survival (%)

Figure 4A

Probability of distant relapse-free survival (%)

Figure 4B

n = 15
Clinical Cancer Research

Adding Base Excision Repair Inhibitor TRC102 to standard Pemetrexed-Platinum-Radiation in Patients with Advanced Non-Squamous Non-Small Cell Lung Cancer: Results of a phase I trial

Clin Cancer Res Published OnlineFirst November 5, 2021.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-21-2025

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2021/11/02/1078-0432.CCR-21-2025.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link:
http://clincancerres.aacrjournals.org/content/early/2021/11/04/1078-0432.CCR-21-2025.
Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.