RT Journal Article SR Electronic T1 IFNγ-induced Chemokines Are Required for CXCR3-mediated T-Cell Recruitment and Antitumor Efficacy of Anti-HER2/CD3 Bispecific Antibody JF Clinical Cancer Research JO Clin Cancer Res FD American Association for Cancer Research SP 6447 OP 6458 DO 10.1158/1078-0432.CCR-18-1139 VO 24 IS 24 A1 Li, Ji A1 Ybarra, Ryan A1 Mak, Judy A1 Herault, Aurelie A1 De Almeida, Patricia A1 Arrazate, Alfonso A1 Ziai, James A1 Totpal, Klara A1 Junttila, Melissa R. A1 Walsh, Kevin B. A1 Junttila, Teemu T. YR 2018 UL http://clincancerres.aacrjournals.org/content/24/24/6447.abstract AB Purpose: The response to cancer immune therapy is dependent on endogenous tumor-reactive T cells. To bypass this requirement, CD3-bispecific antibodies have been developed to induce a polyclonal T-cell response against the tumor. Anti-HER2/CD3 T-cell–dependent bispecific (TDB) antibody is highly efficacious in the treatment of HER2-overexpressing tumors in mice. Efficacy and immunologic effects of anti-HER2/CD3 TDB were investigated in mammary tumor model with very few T cells prior treatment. We further describe the mechanism for TDB-induced T-cell recruitment to tumors.Experimental Design: The immunologic effects and the mechanism of CD3-bispecific antibody-induced T-cell recruitment into spontaneous HER2-overexpressing mammary tumors was studied using human HER2 transgenic, immunocompetent mouse models.Results: Anti-HER2/CD3 TDB treatment induced an inflammatory response in tumors converting them from poorly infiltrated to an inflamed, T-cell abundant, phenotype. Multiple mechanisms accounted for the TDB-induced increase in T cells within tumors. TDB treatment induced CD8+ T-cell proliferation. T cells were also actively recruited post-TDB treatment by IFNγ-dependent T-cell chemokines mediated via CXCR3. This active T-cell recruitment by TDB-induced chemokine signaling was the dominant mechanism and necessary for the therapeutic activity of anti-HER2/CD3 TDB.Conclusions: In summary, we demonstrate that the activity of anti-HER2/CD3 TDB was not dependent on high-level baseline T-cell infiltration. Our results suggest that anti-HER2/CD3 TDB may be efficacious in patients and indications that respond poorly to checkpoint inhibitors. An active T-cell recruitment mediated by TDB-induced chemokine signaling was the major mechanism for T-cell recruitment.