RT Journal Article SR Electronic T1 Adaptive Resistance to Dual BRAF/MEK Inhibition in BRAF-Driven Tumors through Autocrine FGFR Pathway Activation JF Clinical Cancer Research JO Clin Cancer Res FD American Association for Cancer Research SP 7202 OP 7217 DO 10.1158/1078-0432.CCR-18-2779 VO 25 IS 23 A1 Wang, Victoria E. A1 Xue, Jenny Y. A1 Frederick, Dennie T. A1 Cao, Yi A1 Lin, Eva A1 Wilson, Catherine A1 Urisman, Anatoly A1 Carbone, David P. A1 Flaherty, Keith T. A1 Bernards, Rene A1 Lito, Piro A1 Settleman, Jeff A1 McCormick, Frank YR 2019 UL http://clincancerres.aacrjournals.org/content/25/23/7202.abstract AB Purpose: Combined MAPK pathway inhibition using dual BRAF and MEK inhibitors has prolonged the duration of clinical response in patients with BRAFV600E-driven tumors compared with either agent alone. However, resistance frequently arises.Experimental Design: We generated cell lines resistant to dual BRAF/MEK inhibition and utilized a pharmacologic synthetic lethal approach to identify a novel, adaptive resistance mechanism mediated through the fibroblast growth factor receptor (FGFR) pathway.Results: In response to drug treatment, transcriptional upregulation of FGF1 results in autocrine activation of FGFR, which potentiates extracellular signal-regulated kinases (ERK) activation. FGFR inhibition overcomes resistance to dual BRAF/MEK inhibitors in both cell lines and patient-derived xenograft (PDX) models. Abrogation of this bypass mechanism in the first-line setting enhances tumor killing and prevents the emergence of drug-resistant cells. Moreover, clinical data implicate serum FGF1 levels in disease prognosis.Conclusions: Taken together, these results describe a new, adaptive resistance mechanism that is more commonly observed in the context of dual BRAF/MEK blockade as opposed to single-agent treatment and reveal the potential clinical utility of FGFR-targeting agents in combination with BRAF and MEK inhibitors as a promising strategy to forestall resistance in a subset of BRAF-driven cancers.