RT Journal Article SR Electronic T1 The Landscape of Prognostic Outlier Genes in High-Risk Prostate Cancer JF Clinical Cancer Research JO Clin Cancer Res FD American Association for Cancer Research SP 1777 OP 1786 DO 10.1158/1078-0432.CCR-15-1250 VO 22 IS 7 A1 Zhao, Shuang G. A1 Evans, Joseph R. A1 Kothari, Vishal A1 Sun, Grace A1 Larm, Ashley A1 Mondine, Victor A1 Schaeffer, Edward M. A1 Ross, Ashley E. A1 Klein, Eric A. A1 Den, Robert B. A1 Dicker, Adam P. A1 Karnes, R. Jeffrey A1 Erho, Nicholas A1 Nguyen, Paul L. A1 Davicioni, Elai A1 Feng, Felix Y. YR 2016 UL http://clincancerres.aacrjournals.org/content/22/7/1777.abstract AB Purpose: There is a clear need to improve risk stratification and to identify novel therapeutic targets in aggressive prostate cancer. The goal of this study was to investigate genes with outlier expression with prognostic association in high-risk prostate cancer patients as potential biomarkers and drug targets.Experimental Design: We interrogated microarray gene expression data from prostatectomy samples from 545 high-risk prostate cancer patients with long-term follow-up (mean 13.4 years). Three independent clinical datasets totaling an additional 545 patients were used for validation. Novel prognostic outlier genes were interrogated for impact on oncogenic phenotypes in vitro using siRNA-based knockdown. Association with clinical outcomes and comparison with existing prognostic instruments was assessed with multivariable models using a prognostic outlier score.Results: Analysis of the discovery cohort identified 20 prognostic outlier genes. Three top prognostic outlier genes were novel prostate cancer genes; NVL, SMC4, or SQLE knockdown reduced migration and/or invasion and outlier expression was significantly associated with poor prognosis. Increased prognostic outlier score was significantly associated with poor prognosis independent of standard clinicopathologic variables. Finally, the prognostic outlier score prognostic association is independent of, and adds to existing genomic and clinical tools for prognostication in prostate cancer (Decipher, the cell-cycle progression signature, and CAPRA-S).Conclusions: To our knowledge, this study represents the first unbiased high-throughput investigation of prognostic outlier genes in prostate cancer and demonstrates the potential biomarker and therapeutic importance of this previously unstudied class of cancer genes. Clin Cancer Res; 22(7); 1777–86. ©2015 AACR.